Jump to content

SpaceX Falcon Heavy Launch : USSF-44 Mission


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA, Intuitive Machines Moon Mission Update
    • By NASA
      On Feb. 22, 2024, Intuitive Machines’ Odysseus lunar lander captures a wide field of view image of Schomberger crater on the Moon approximately 125 miles (200 km) uprange from the intended landing site, at approximately 6 miles (10 km) altitude. Credit: Intuitive Machines NASA and Intuitive Machines will co-host a televised news conference at 2 p.m. EST Wednesday, Feb. 28, from the agency’s Johnson Space Center in Houston to highlight the company’s first mission, known as IM-1.
      The lander, called Odysseus, carried six NASA science instruments to the South Pole region of the Moon as part of the agency’s Commercial Lunar Payload Services (CLPS) initiative, and Artemis campaign. The IM-1 mission is the first U.S. soft landing on the Moon in more than 50 years, successfully landing on Feb. 22.
      The news conference will air on NASA+, NASA Television, and the agency’s website
      Learn how to stream NASA TV on a variety of platforms, including social media.
      Participants in the news conference include:
      Joel Kearns, deputy associate administrator, Exploration, Science Mission Directorate, NASA Headquarters in Washington Sue Lederer, CLPS project scientist, NASA Johnson Steve Altemus, chief executive officer and co-founder, Intuitive Machines Tim Crain, chief technology officer and co-founder, Intuitive Machines Media interested in participating in person must RSVP no later than 11 a.m. on Feb. 28. To participate by telephone, media must RSVP no later than one hour before the start of the news conference. Submit either request to the NASA Johnson newsroom at 281-483-5111 or jsccommu@mail.nasa.gov. The agency’s media accreditation policy is online.
      For more information about the agency’s Commercial Lunar Payload Services initiative, visit:
      https://www.nasa.gov/clps
      -end-
      Cheryl Warner / Karen Fox
      Headquarters, Washington
      202-358-1100
      cheryl.m.warner@nasa.gov/ karen.c.fox@nasa.gov
      Nilufar Ramji / Laura Sorto
      Johnson Space Center, Houston
      281-483-5111
      nilufar.ramji@nasa.gov/ laura.g.sorto@nasa.gov
      Josh Marshall
      Intuitive Machines, Houston
      jmarshall@intuitivemachines.com
      View the full article
    • By NASA
      NASA's SpaceX Crew-8 Launch (Official NASA Broadcast in 4K)
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Meredith Patterson, front row, center right, poses with her teammates in the High-Powered Rocketry Club at North Carolina State University on the day they launched the rocket they built for NASA’s 2023 Student Launch. The experience and knowledge Patterson gained from her years participating in the annual competition helped pave the way for a career at NASA after graduation. High-Powered Rocketry Club at NC State By Jessica Barnett
      Sometimes, all it takes is a few years and the right people to completely change a person’s career trajectory. One such example is Meredith Patterson, an aerospace engineer at NASA’s Marshall Space Flight Center in Huntsville, Alabama, who went from knowing little to nothing about rockets to being part of the team that is working to put humans back on the Moon.
      She credits her success in large part to NASA’s Student Launch, which not only helped her uncover her passion for aerospace engineering but gave her the knowledge and experience she needed to get where she is today.
      The annual Student Launch competition invites student teams from across the U.S. to spend nine months designing, building, and testing a high-powered rocket carrying a scientific or engineering payload. The hands-on, research-based engineering activity culminates each year in a final launch in Huntsville. This year’s challenge conclusion is set for April 10-14, with the final launch date set for April 13 at Bragg Farms in Toney, Alabama.
      While Student Launch is open to students as young as sixth grade, Patterson was in her junior year of high school when she learned about the competition during a tour of North Carolina State University.
      “When I walked into the rocketry lab there, I knew then, however many years it was going to take, I wanted to be the person who was able to run that and help put together everything for us to be successful in Student Launch,” Patterson said.
      Meredith Patterson, then-freshman at North Carolina State University, assembles the competition vehicle used by the school’s high-powered rocketry club in this photo from the NASA’s 2019 Student Launch. Patterson was a member of the club and a regular participant in Student Launch for five years before graduating and turning her experience into a full-time career as an aerospace engineer at NASA. High-Powered Rocketry Club at NC State She attended North Carolina State for five years, participating in each year’s Student Launch competition and leading the team to a fourth-place win during her final year. She received her Level I and Level II certifications from Tripoli Rocketry Association through Student Launch, and she was able to connect with mentors from Tripoli and the National Rocketry Association that helped her get the hands-on experience and technical know-how she believes are key to success in the aerospace industry.
      “My leadership skills grew, my system engineering skills grew, and my technical writing skills grew,” Patterson said. “Having mentors through the competition allowed me to ask questions and learn on the technical side of things, too. I think I use more information from Student Launch day to day than from almost any of my classes in college.”
      She said attending an engineering camp at 16 years old first unlocked her interest in spaceflight and rocketry, but it was through Student Launch that she got to really dive in and deepen her passion.
      “It’s crazy to think that less than 10 years ago, I had never even built a rocket, and now I can build Level II-sized rockets on my own and I’m actively working on the biggest solid rocket boosters in the world,” Patterson said. “Just in the past year, I’ve gone from the L-class motor that we used for Student Launch to casting 11-inch motors to now actively watching the casting of the SLS (Space Launch System) boosters.”
      Meredith Patterson, a former competitor in NASA’s Student Launch Challenge, now works as an aerospace engineer at NASA’s Marshall Space Flight Center.NASA Student Launch is part of NASA’s Artemis Student Challenges. Seventy teams representing 24 states and Puerto Rico were selected to compete in the 2024 Student Launch Challenge.
      Marshall hosts the Student Launch challenge with management support provided by NASA’s Office of STEM Engagement – Southeast Region. Funding is provided, in part, by NASA’s Space Operations Mission Directorate and NASA’s Next Gen STEM project.
      Share
      Details
      Last Updated Feb 27, 2024 Related Terms
      Marshall Space Flight Center Explore More
      5 min read NASA’s Planetary Protection Team Conducts Vital Research for Deep Space Missions
      Article 5 days ago 3 min read NASA to Continue Testing for New Artemis Moon Rocket Engines
      Article 5 days ago 30 min read The Marshall Star for February 21, 2024
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Faces of STEM
      NASA Student Launch Challenge
      Middle/high school and college-level student teams design, build, test, and launch a high-powered rocket carrying a scientific or engineering payload.
      Marshall Space Flight Center
      HERC Teams
      View the full article
    • By NASA
      5 Min Read The CUTE Mission: Innovative Design EnablesObservations of Extreme Exoplanets from a SmallPackage
      Fig 1: Artist’s concept of the CUTE mission on-orbit. CUTE has been operating in a 560 km sun-synchronous orbit since September 2021. Credits:
      NASA Of the approximately 5,500 exoplanets discovered to date, many have been found to orbit very close to their parent stars. These close-in planets provide a unique opportunity to observe in detail the phenomena critical to the development and evolution of our own solar system, including atmospheric mass loss and interactions with the host star. NASA’s Colorado Ultraviolet Transit Experiment (CUTE) mission, launched in September 2021, employed a new design that enabled exploration of these processes using a small spacecraft for the first time. CUTE provides unique spectral diagnostics that trace the escaping atmospheres of close-in, ultra-hot, giant planets. In addition, CUTE’s dedicated mission architecture enables the survey duration required to characterize atmospheric structure and variability on these worlds.
      Atmospheric escape is a fundamental process that affects the structure, composition, and evolution of many planets. It has operated on all of the terrestrial planets in our solar system and likely drives the demographics of the short-period planet population characterized by NASA’s Kepler mission. In fact, atmospheric escape ultimately may be the determining factor when predicting the habitability of temperate, terrestrial exoplanets. Escaping exoplanet atmospheres were first observed in the hydrogen Lyman-alpha line (121nm) in 2003. However, contamination by neutral hydrogen in both the intervening interstellar medium and Earth’s upper atmosphere makes obtaining high-quality Lyman-alpha transit measurements for most exoplanets very challenging. By contrast, a host star’s near-ultraviolet (NUV; 250 – 350 nm) flux is two to three orders of magnitude higher than Lyman-alpha, and transit light curves can be measured against a smoother stellar surface intensity distribution.
      This knowledge motivated a team led by Dr. Kevin France at the University of Colorado Laboratory for Atmospheric and Space Physics to design the CUTE mission (Fig 1). The team proposed the CUTE concept to NASA through the ROSES/Astrophysics Research and Analysis (APRA) Program in February 2016 and NASA funded the project in July 2017. The CUTE instrument pioneered use of two technologies on a small space mission: a novel, rectangular Cassegrain telescope (20cm × 8cm primary mirror) and a miniature, low-resolution spectrograph operating from approximately 250 – 330 nm. The rectangular telescope was fabricated to accommodate the unique instrument volume of the 6U CubeSat form factor, an adaptation that delivers approximately three times the collecting area of a traditional, circular aperture telescope.  The compact spectrograph meets the spectral resolution requirements of the mission while using scaled down component technology adapted from the Hubble Space Telescope.
      Fig 2 – Image of the CUTE science instrument, including rectangular telescope and miniaturized spectrograph, mounted to the spacecraft bus. Credit: CUTE Team, University of Colorado This novel instrument design enables CUTE to measure NUV with similar precision as larger missions even in the more challenging thermal and pointing environment experienced by a CubeSat. In addition, the CUTE instrument’s NUV bandpass enables it to measure iron and magnesium ions from highly extended atmospheric layers that ground-based instruments cannot access. The CUTE science instrument is incorporated into a 6U Blue Canyon Technologies spacecraft bus that provides power, command and data handling, attitude control, and communications. This CubeSat platform enables CUTE to observe numerous transits of a given planet. The spectrogram from the CUTE instrument is recorded on a UV-optimized commercial off-the-shelf charge-coupled device (CCD), onboard data processing is performed, and data products are relayed to a ground station at the University of Colorado.
      Fig 3 –Graduate student Arika Egan (center) and electrical engineer Nicholas DeCicco (left) install CUTE into the LANDSAT-9 secondary payload dispenser at Vandenberg Space Force Base. Credit: CUTE Team, University of Colorado CUTE was launched as a secondary payload on NASA’s LANDSAT-9 mission on September 27, 2021 into a Sun-synchronous orbit with a 560 km apogee. CUTE deployed from the payload dispenser (Fig 2) approximately two hours after launch and then deployed its solar arrays. Spacecraft beacon signals were identified by the amateur radio community on the first orbit and communications were established with the ground station at the University of Colorado the following day. On-orbit commissioning of the spacecraft and instrument concluded in February 2022 and the mission has been conducting science operations since that time.
      As of February 2024, CUTE is actively acquiring science and calibration data (Fig 3), and has observed between 6 and 11 transits of seven different exoplanetary systems. Data downlink efficiency is the primary factor limiting the number of targets observed over the course of the mission. CUTE light curves and transit spectroscopy are revealing extended NUV atmospheres on some planets (Fig 4) and potential time variability in the atmospheric transmission spectra of others. For example, observations of the ultra-hot exoplanet, Jupiter WASP-189b, indicate a highly extended atmosphere. Magnesium ions are observed to be gravitationally unbound from the planet, which is evidence for active escape of heavy elements in this system. CUTE data are being archived by the NASA Exoplanet Science Institute (NExScI).
      Fig 4 – Flight data from CUTE showing raw CCD observations (top) and calibrated one-dimensional spectra (bottom). Image credit: France et al (2023) Fig 5 – CUTE NUV transit light curve of the ultra-hot exoplanet, Jupiter WASP-189b. This light curve was created from three separate transit visits to the planet. Image credit: Sreejith, et al (2023) CUTE successfully demonstrated the use of a non-circular telescope and miniature spectrograph design for small space missions, an approach that has been subsequently adopted by several NASA and international mission designs, including NASA’s new Monitoring Activity from Nearby sTars with uv Imaging and Spectroscopy (MANTIS) mission. CUTE’s demonstration of sub-1% NUV precision has shown that the precision achieved by large UV astronomy missions can also be achieved by a CubeSat. In addition, student training and early-career mentorship have been key ingredients to CUTE’s mission success. So far, over 20 early career students and professionals have trained and participated in CUTE activities—ranging from science to engineering to operations.
      PROJECT LEAD
      Professor Kevin France, Laboratory for Atmospheric and Space Physics/University of Colorado
      SPONSORING ORGANIZATION
      Astrophysics Division Astrophysics Research and Analysis Program
      Share








      Details
      Last Updated Feb 27, 2024 Related Terms
      Astrophysics Science-enabling Technology Technology Highlights Explore More
      1 min read Hubble Views an Active Star-Forming Galaxy


      Article


      4 days ago
      5 min read Webb Finds Evidence for Neutron Star at Heart of Young Supernova Remnant


      Article


      5 days ago
      2 min read Hubble Views a Massive Star Forming


      Article


      2 weeks ago
      View the full article
  • Check out these Videos

×
×
  • Create New...