Jump to content

Former Navy Pilot: "I witnessed a solid black cube inside a translucent sphere"


Recommended Posts

Posted
Former Lt. U.S. Navy and F/A-18F pilot Ryan Graves was the first actives duty pilot to publicly disclose regular sightings of Unindentified Aerial Phenomenon (UAP) talks about his encounter with what he describes as a solid black cube inside a translucent sphere. 

pilot%20black%20cube%20translucent%20sphere.jpg

He states that despite the wind was over 120-140mph the object was completely stationary midair without moving a bit up and down, left or right as well as the object followed a so-called "racetrack" what means it was not flying a straight flight path but flew a random track where it made impossible maneuvers like a u turn without slowing down. 

After the F/A-18F got an upgraded radar system, the pilots saw these kinds of objects of unknown origin on a daily basis and not only Navy pilots, also commercial pilots have reported these extraordinary flying objects, like the pilot who captured a black cube at high altitude during a commercial flight, see second video below. 

We can speculate whether these objects without wings or visible propulsion are man-made or of extraterrestrial origin, the fact is that these objects with exceptional abilities exist and move through our skies for whatever reason.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      Several days ago, a massive blackout swept across large parts of Spain, Portugal, and parts of southern France. Millions were left without power as the interconnected European energy grid experienced a rare and abrupt failure. While authorities quickly pointed to a "rare atmospheric phenomenon" as the cause, not everyone is convinced. 

      Here are some explanations of authorities as well as controversial theories: 
      According to REN, Portugal’s national electricity grid operator, the blackout was triggered by a fault originating in Spain’s power infrastructure. The disruption, they claim, was linked to "induced atmospheric variation", a term referring to extreme temperature differences that led to anomalous oscillations in high-voltage transmission lines. These oscillations reportedly caused synchronization failures between regional grid systems, ultimately sparking a chain reaction of failures across the European network. 
      What makes the situation even more intriguing is that just days before the blackout, Spain hit a historic energy milestone. On April 16, for the first time, the country’s electricity demand was met entirely by renewable energy sources - solar, wind, and hydro, during a weekday. It raises questions whether the outage was caused by a technical failure of this new renewable energy system. 
      While this achievement is noteworthy, it also exposes the fragility of a grid increasingly reliant on variable energy sources, especially solar, which can fluctuate dramatically with weather and atmospheric conditions. 
      Despite official explanations, some experts and observers remain skeptical. There were no solar flares or geomagnetic storms in the days leading up to the blackout, and solar activity had been relatively calm. Critics argue that while atmospheric disturbances may have played a role, they are not sufficient to explain such a widespread, synchronized failure.
      Despite the fact that the blackout this time was probably not caused by solar flares or geomagnetic storms it has been proven that Earth’s magnetic shield is rapidly weakening, leaving us increasingly vulnerable to powerful solar storms. The magnetic north pole is accelerating toward Siberia, and the South Atlantic Anomaly continues to expand, ominous signs that a looming plasma event could bring consequences far beyond just technological disruption.
      This has led to speculation that the blackout could have been intentional, possibly even a test run for handling future crises or threats to infrastructure. 
      Among the more controversial theories is the suggestion that this event might have involved the use of a graphite bomb, a non-lethal weapon designed to disable power grids. These devices disperse ultra-fine carbon filaments into high-voltage power lines, causing short circuits by creating conductive paths between lines. Such an attack would appear as a grid malfunction but could be devastating in scale. 
      Another controversial theory is that the outage has been caused by weather manipulation systems such as HAARP or the Ice Cube Neutrino observatory, constructed at the Amundsen–Scott South Pole Station in Antarctica. 
      Could this have been a covert drill or a demonstration of vulnerability? Some point to global forums, such as the World Government Summit, where figures like Klaus Schwab have warned about Black Swan: An unpredictable event that is beyond what is normally expected of a situation and has potentially severe consequences. 
      Whether the blackout was triggered by a rare natural event, a technical failure, or something more deliberate, it seems only a matter of time before we face a true Black Swan event. View the full article
    • By NASA
      Jeremy Johnson, a research pilot and aviation safety officer, poses in front of a PC-12 aircraft inside the hangar at NASA’s Glenn Research Center in Cleveland on Thursday, April 17, 2025. Johnson flies NASA planes to support important scientific research and testing.Credit: NASA/Sara Lowthian-Hanna Jeremy Johnson laces his black, steel-toed boots and zips up his dark blue flight suit. Having just finished a pre-flight mission briefing with his team, the only thing on his mind is heading to the aircraft hangar and getting a plane in the air.
      As he eases a small white-and-blue propeller aircraft down the hangar’s ramp and onto the runway, he hears five essential words crackle through his headset: “NASA 606, cleared for takeoff.”
      This is a typical morning for Johnson, a research pilot and aviation safety officer at NASA’s Glenn Research Center in Cleveland. Johnson flies NASA planes to support important scientific research and testing, working with researchers to plan and carry out flights that will get them the data they need while ensuring safety.
      Johnson hasn’t always flown in NASA planes. He comes to the agency from the U.S. Air Force, where he flew missions all over the world in C-17 cargo aircraft, piloted unmanned reconnaissance operations out of California, and trained young aviators in Oklahoma on the fundamentals of flying combat missions.

      Jeremy Johnson stands beside a C-17 aircraft before a night training flight in Altus, Oklahoma, in 2020. Before supporting vital flight research at NASA through a SkillBridge fellowship, which gives transitioning service members the opportunity to gain civilian work experience, Johnson served in the U.S. Air Force and flew C-17 airlift missions all over the world.Credit: Courtesy of Jeremy Johnson He’s at Glenn for a four-month Department of Defense SkillBridge fellowship. The program gives transitioning service members an opportunity to gain civilian work experience through training, apprenticeships, or internships during their last 180 days of service before separating from the military.
      “I think SkillBridge has been an amazing tool to help me transition into what it’s like working somewhere that isn’t the military,” Johnson said. “In the Air Force, flying the mission was the mission. At NASA Glenn, the science—the research—is the mission.”
      By flying aircraft outfitted with research hardware or carrying test equipment, Johnson has contributed to two vital projects at NASA so far. One is focused on testing how well laser systems can transmit signals for communication and navigation. The other, part of NASA’s research under Air Mobility Pathfinders, explores how 5G telecommunications infrastructure can help electric air taxis of the future be safely incorporated into the national airspace. This work, and the data that scientists can collect through flights, supports NASA’s research to advance technology and innovate for the benefit of all.
      Jeremy Johnson pilots NASA Glenn Research Center’s PC-12 aircraft during a research flight on Thursday, April 17, 2025.Credit: NASA/Sara Lowthian-Hanna “It’s really exciting to see research hardware come fresh from the lab, and then be strapped onto an aircraft and taken into flight to see if it actually performs in a relevant environment,” Johnson said. “Every flight you do is more than just that flight—it’s one little part of a much bigger, much more ambitious project that’s going on. You remember, this is a small little piece of something that is maybe going to change the frontier of science, the frontier of discovery.”
      Johnson has always had a passion for aviation. In college, he worked as a valet to pay for flying lessons. To hone his skills before Air Force training, one summer he flew across the country in a Cessna with his aunt, a commercial pilot. They flew down the Hudson River as they watched the skyscrapers of New York City whizz by and later to Kitty Hawk, North Carolina, where the Wright brothers made their historic first flight. Johnson even flew skydivers part-time while he was stationed in California.
      Jeremy Johnson in the cockpit of a PC-12 aircraft as it exits the hangar at NASA’s Glenn Research Center in Cleveland before a research flight on Thursday, April 17, 2025.Credit: NASA/Sara Lowthian-Hanna Although he’s spent countless hours flying, he still takes the window seat on commercial flights whenever he can so he can look out the window and marvel at the world below.
      Despite his successes, Johnson’s journey to becoming a pilot wasn’t always smooth. He recalls that as he was about to land after his first solo flight, violent crosswinds blew his plane off the runway and sent him bouncing into the grass. Though he eventually got back behind the stick for another flight, he said that in that moment he wondered whether he had the strength and skills to overcome his self-doubt.
      “I don’t know anyone who flies for a living that had a completely easy path into it,” Johnson said. “To people who are thinking about getting into flying, just forge forward with it. Make people close doors on you, don’t close them on yourself, when it comes to flying or whatever you see yourself doing in the future. I just kept knocking on the door until there was a crack in it.”
      Explore More
      2 min read NASA, Boeing, Consider New Thin-Wing Aircraft Research Focus
      Article 19 hours ago 3 min read Nine Finalists Advance in NASA’s Power to Explore Challenge
      NASA has named nine finalists out of the 45 semifinalist student essays in the Power…
      Article 2 days ago 4 min read NASA Tests Ultralight Antennas to Benefit Future National Airspace
      Article 3 days ago View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      An astronaut glove designed for International Space Station spacewalks is prepped for testing in a chamber called CITADEL at NASA JPL. Conducted at temperatures as frigid as those Artemis III astronauts will see on the lunar South Pole, the testing supports next-generation spacesuit development.NASA/JPL-Caltech Engineers with NASA Johnson and the NASA Engineering and Safety Center ready an astronaut glove for insertion into the main CITADEL chamber at JPL. The team tested the glove in vacuum at minus 352 degrees Fahrenheit (minus 213 degrees Celsius).NASA/JPL-Caltech A JPL facility built to support potential robotic spacecraft missions to frozen ocean worlds helps engineers develop safety tests for next-generation spacesuits.
      When NASA astronauts return to the Moon under the Artemis campaign and eventually venture farther into the solar system, they will encounter conditions harsher than any humans have experienced before. Ensuring next-generation spacesuits protect astronauts requires new varieties of tests, and a one-of-a-kind chamber called CITADEL (Cryogenic Ice Testing, Acquisition Development, and Excavation Laboratory) at NASA’s Jet Propulsion Laboratory in Southern California is helping.
      Built to prepare potential robotic explorers for the frosty, low-pressure conditions on ocean worlds like Jupiter’s frozen moon Europa, CITADEL also can evaluate how spacesuit gloves and boots hold up in extraordinary cold. Spearheaded by the NASA Engineering and Safety Center, a glove testing campaign in CITADEL ran from October 2023 to March 2024. Boot testing, initiated by the Extravehicular Activity and Human Surface Mobility Program at NASA’s Johnson Space Center in Houston, took place from October 2024 to January 2025.

      An astronaut boot — part of a NASA lunar spacesuit prototype, the xEMU — is readied for testing in JPL’s CITADEL. A thick aluminum plate stands in for the cold surface of the lunar South Pole, where Artemis III astronauts will confront conditions more extreme than any humans have yet experienced.NASA/JPL-Caltech In coming months, the team will adapt CITADEL to test spacesuit elbow joints to evaluate suit fabrics for longevity on the Moon. They’ll incorporate abrasion testing and introduce a simulant for lunar regolith, the loose material that makes up the Moon’s surface, into the chamber for the first time.
      “We’ve built space robots at JPL that have gone across the solar system and beyond,” said Danny Green, a mechanical engineer who led the boot testing for JPL. “It’s pretty special to also use our facilities in support of returning astronauts to the Moon.”
      Astronauts on the Artemis III mission will explore the Moon’s South Pole, a region of much greater extremes than the equatorial landing sites visited by Apollo-era missions. They’ll spend up to two hours at a time inside craters that may contain ice deposits potentially important to sustaining long-term human presence on the Moon. Called permanently shadowed regions, these intriguing features rank among the coldest locations in the solar system, reaching as low as minus 414 degrees Fahrenheit (minus 248 degrees Celsius). The CITADEL chamber gets close to those temperatures.
      Engineers from JPL and NASA Johnson set up a test of the xEMU boot inside CITADEL. Built to prepare potential robotic explorers for conditions on ocean worlds like Jupiter’s moon Europa, the chamber offers unique capabilities that have made it useful for testing spacesuit parts.NASA/JPL-Caltech “We want to understand what the risk is to astronauts going into permanently shadowed regions, and gloves and boots are key because they make prolonged contact with cold surfaces and tools,” said Zach Fester, an engineer with the Advanced Suit Team at NASA Johnson and the technical lead for the boot testing.
      Keeping Cool
      Housed in the same building as JPL’s historic 10-Foot Space Simulator, the CITADEL chamber uses compressed helium to get as low as minus 370 F (minus 223 C) — lower than most cryogenic facilities, which largely rely on liquid nitrogen. At 4 feet (1.2 meters) tall and 5 feet (1.5 meters) in diameter, the chamber is big enough for a person to climb inside.
      An engineer collects simulated lunar samples while wearing the Axiom Extravehicular Mobility Unit spacesuit during testing at NASA Johnson in late 2023. Recent testing of existing NASA spacesuit designs in JPL’s CITADEL chamber will ultimately support de-velopment of next-generation suits being built by Axiom Space.Axiom Space More important, it features four load locks, drawer-like chambers through which test materials are inserted into the main chamber while maintaining a chilled vacuum state. The chamber can take several days to reach test conditions, and opening it to insert new test materials starts the process all over again. The load locks allowed engineers to make quick adjustments during boot and glove tests.
      Cryocoolers chill the chamber, and aluminum blocks inside can simulate tools astronauts might grab or the cold lunar surface on which they’d walk. The chamber also features a robotic arm to interact with test materials, plus multiple visible-light and infrared cameras to record operations.
      Testing Extremities
      The gloves tested in the chamber are the sixth version of a glove NASA began using in the 1980s, part of a spacesuit design called the Extravehicular Mobility Unit. Optimized for spacewalks at the International Space Station, the suit is so intricate it’s essentially a personal spacecraft. Testing in CITADEL at minus 352 F (minus 213 C) showed the legacy glove would not meet thermal requirements in the more challenging environment of the lunar South Pole. Results haven’t yet been fully analyzed from boot testing, which used a lunar surface suit prototype called the Exploration Extravehicular Mobility Unit. NASA’s reference design of an advanced suit architecture, this spacesuit features enhanced fit, mobility, and safety.
      In addition to spotting vulnerabilities with existing suits, the CITADEL experiments will help NASA prepare criteria for standardized, repeatable, and inexpensive test methods for the next-generation lunar suit being built by Axiom Space — the Axiom Extravehicular Mobility Unit, which NASA astronauts will wear during the Artemis III mission.
      “This test is looking to identify what the limits are: How long can that glove or boot be in that lunar environment?” said Shane McFarland, technology development lead for the Advanced Suit Team at NASA Johnson. “We want to quantify what our capability gap is for the current hardware so we can give that information to the Artemis suit vendor, and we also want to develop this unique test capability to assess future hardware designs.”
      In the past, astronauts themselves have been part of thermal testing. For gloves, an astronaut inserted a gloved hand into a chilled “glove box,” grabbed a frigid object, and held it until their skin temperature dropped as low as 50 F (10 C). McFarland stressed that such human-in-the-loop testing remains essential to ensuring future spacesuit safety but doesn’t produce the consistent data the team is looking for with the CITADEL testing.
      To obtain objective feedback, the CITADEL testing team used a custom-built manikin hand and foot. A system of fluid loops mimicked the flow of warm blood through the appendages, while dozens of temperature and heat flux sensors provided data from inside gloves and boots.
      “By using CITADEL and modern manikin technology, we can test design iterations faster and at much lower cost than traditional human-in-the-loop testing,” said Morgan Abney, NASA technical fellow for Environmental Control and Life Support, who conceived the glove testing effort. “Now we can really push the envelope on next-generation suit designs and have confidence we understand the risks. We’re one step closer to landing astronauts back on the Moon.”
      Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      Houston, We Have a Podcast: next-generation spacesuits Why NASA’s Perseverance rover carries spacesuit materials News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2025-060
      Share
      Details
      Last Updated Apr 24, 2025 Related Terms
      Artemis 3 Earth's Moon Exploration Systems Development Mission Directorate Jet Propulsion Laboratory NASA Engineering & Safety Center Academy Spacesuits xEVA & Human Surface Mobility Explore More
      3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery
      Article 7 days ago 4 min read NASA Aims to Fly First Quantum Sensor for Gravity Measurements
      Researchers from NASA’s Jet Propulsion Laboratory in Southern California, private companies, and academic institutions are…
      Article 1 week ago 3 min read Michael Ciancone Builds a Lasting Legacy in Human Spaceflight 
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      When a social media message pops up offering a high-paying consulting job from an unknown recruiter, it’s easy to be intrigued, but think twice. For many current and former members of the Department of the Air Force, and increasingly, across the entire U.S. government workforce, this is the first step in a recruitment scheme by foreign intelligence entities, officials warn.

      View the full article
    • By European Space Agency
      The European Space Agency's XMM-Newton is playing a crucial role in investigating the longest and most energetic bursts of X-rays seen from a newly awakened black hole. Watching this strange behaviour unfold in real time offers a unique opportunity to learn more about these powerful events and the mysterious behaviour of massive black holes.
      View the full article
  • Check out these Videos

×
×
  • Create New...