Jump to content

Solar Orbiter’s unprecedented view of the quiet corona

Recommended Posts

Solar_Orbiter_s_unprecedented_view_of_th Video: 00:01:27

The ESA-led Solar Orbiter mission has experienced its second close encounter with the Sun. It is delivering more stunning data, and at higher resolution than ever before.

The moment of closest approach took place on 12 October at 19:12 UTC (21:12 CEST), when Solar Orbiter was just 29% of the Earth’s distance from the Sun. This movie comes from 13 October, when the spacecraft’s Extreme Ultraviolet Imager (EUI) returned the highest resolution movie of the quiet corona ever taken with any instrument.

Each pixel on this movie spans 105 km on the surface of the Sun. This means that if EUI were to look at the Earth from this distance, our entire planet would span just 120 pixels across. The movie itself contains 2048 across, meaning that 17 Earths would fit side by side across this image.

The corona is the Sun’s outer atmosphere. It is termed quiet when there is little appreciable solar activity such as flares or coronal mass ejections. This movie, and others taken during the encounter, show the dynamic nature of the Sun's million degree-hot corona. The electrically charged gas here, known as plasma, is in constant motion, guided and accelerated by changes of the Sun's magnetic field. The arches of bright plasma in the movie are being held in place by loops of magnetism that burst up into the corona from the Sun’s interior.

The Sun is currently ramping up for a peak in its activity levels, known as solar maximum, in 2025. So views of a quiet corona are likely to become rarer in the coming few years.

The Sun launches a solar wind of particles that streams out through the Solar System. It originates in the corona but the precise mechanism by which this happens is poorly understood. Investigating this phenomenon is a key focus for solar physicists, and one of Solar Orbiter’s main scientific objectives.

This particular encounter benefited from Solar Orbiter rapidly flying in the direction of Earth. This allowed much more data to be downlinked. It also allowed for coordinated observations of solar features to be made with Earth-based telescopes, from 21 October onwards.

“I am very much looking forward to data from all ten instruments being downloaded during the next few weeks, and then the world-wide science community will be very busy discovering new things using this unique data set,” says Daniel Müller, ESA Project Scientist for Solar Orbiter.

Solar Orbiter is a space mission of international collaboration between ESA and NASA, operated by ESA.

This movie was enhanced with Wavelet Optimized Whitening technique.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s X-59 quiet supersonic research aircraft is dramatically lit for a “glamour shot,” captured before its Jan. 12, 2024, rollout at Lockheed Martin’s Skunk Works facility in Palmdale where the airplane was constructed.Credit: Lockheed Martin / Michael Jackson NASA has issued new grants to five universities to help develop education plans for the community overflight phase of the agency’s Quesst mission, which aims to demonstrate the possibility of supersonic flight without the typical loud sonic booms.
      The new grants, from NASA’s Office of STEM Engagement, will provide each university team with $40,000 to develop science, technology, engineering, and mathematics (STEM) engagement strategic implementation plans for those Quesst community overflights. The awards will focus on plans for engaging with students and educators in the communities that NASA will eventually select for overflights. This will help ensure communities are accurately informed about this phase of Quesst and what involvement in the mission will look like for their community.
      “The Quesst mission is unique at NASA, with community input playing a major part in its success,” said Eric Miller, deputy mission integration manager for Quesst. “These new awards will allow NASA to learn from other STEM professionals, informing us as we develop a framework to effectively engage with students and educators.”
      The selected institutions and their projects, are:
      Carthage College, Kenosha, Wisconsin – STEM Quesst, Wisconsin Space Grant Cornell University, Ithaca, New York –Quesst Community Overflight STEM Engagement New York Space Grant Consortium Old Dominion University, Norfolk, Virginia – Engaging the National NASA Space Grant Network in Support of the Quesst Community Overflight STEM Engagement University of Puerto Rico, San Juan, San Juan, Puerto Rico – Space Grant Quesst Community Overflight STEM Engagement: Sounds of Our World University of California, San Diego, San Diego, California – California Space Grant Planning Support for the Quesst Community Overflight STEM Engagement The deliverables from the awards will help inform a student engagement approach that can be implemented in any community, state, and region that may be selected. NASA has yet to select communities for the overflights.
      Through Quesst, NASA is developing its X-59 experimental aircraft, which will fly faster than the speed of sound while producing only a quiet sonic “thump.” After the X-59 completes a series of flight tests, NASA will fly it over a number of communities across the country, gathering data about what people below hear.
      For more information about Quesst, visit:
      Gerelle Dodson
      Headquarters, Washington
      Last Updated Feb 27, 2024 LocationNASA Headquarters Related Terms
      Quesst (X-59) Aeronautics Research Mission Directorate For Kids and Students Learning Resources NASA Headquarters Quesst: The Mission Quesst: The Science Quesst: The Team STEM Engagement at NASA View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA recently completed a series of tests to reduce risks prior to Phase 2 of its Quesst mission, which will test the ability of the X-59 experimental aircraft to make sonic booms quieter. Credits: NASA/Steve Parcel NASA’s X-59 experimental aircraft is unique – it’s designed to fly faster than the speed of sound, but without causing a loud sonic boom. To confirm the X-59’s ability to fly supersonic while only producing quiet sonic “thumps,” NASA needs to be able to record these sounds from the ground. The agency recently completed tests aimed at understanding equipment and procedures needed to make those recordings.
      NASA’s Carpet Determination In Entirety Measurements (CarpetDIEM) flights examined the quality and ruggedness of a new generation of ground recording systems, focusing on how to deploy the systems for X-59 testing, and retrieve the data they collect. In all, researchers set up 10 microphone stations over a 30-mile stretch of desert near NASA’s Armstrong Flight Research Center in Edwards, California.
      “We’re trying to answer questions like how many people does it take to go out and service these instruments on a daily basis, how to get the data back, how many vehicles are needed – all those sorts of things on how we operate,” said Forrest Carpenter, principal investigator for the third flight series, known as CarpetDIEM III. “We’re kind of learning how to dance now so that when we get to the big dance, we’re ready to go.”
      The X-59 itself is not yet flying, so using an F-15 and an F-18 from NASA Armstrong, the CarpetDIEM III testing involved 20 supersonic passes with speeds ranging from Mach 1.15 to Mach 1.4, at altitudes ranging from 40,000 to 53,000 feet. Three of the passes involved an F-18 conducting a special inverted dive maneuver to simulate a quiet sonic boom, with one getting as quiet as 67 perceived level decibels, a measure of the perceived noisiness of the jet for an observer on the ground.
      Aerospace engineer Larry Cliatt, Quesst Phase 2 sub-project manager and technical lead for the acoustic validation phase of the Quesst mission, sets up a ground recording system in the California desert. The Quesst mission recently completed testing of operations and equipment to be used in recording the sonic thumps of the X-59. The testing was the third phase of Carpet Determination in Entirety Measurements flights, called CarpetDIEM for short. An F-15 and an F-18 from NASA’s Armstrong Flight Research Center in Edwards, California, created sonic booms, both loud and soft, to verify the operations of ground recording systems spread out across 30 miles of open desert.NASA/Steve Freeman “We expect the X-59 sonic thump to be as low as about 75 perceived loudness decibels,” said Larry Cliatt, sub-project manager for the Quesst acoustic validation phase. “That is a lot quieter than the Concord, which was over 100 perceived loudness decibels.”
      In order to measure these very quiet sonic thumps, the ground recording systems used in the CarpetDIEM flights were calibrated to measure as low as about 50 perceived loudness decibels – the equivalent to being in the room with a running refrigerator.
      CarpetDIEM III also validated the use of Automatic Dependent Surveillance-Broadcast, an existing technology flown on all commercial aircraft and most private aircraft to report speed and position. This system triggers the ground recording systems to begin recording.
      “We can’t have 70 different people at every single instrumentation box,” Cliatt said. “We had to find a way to automate that process.”
      Dr. Forrest Carpenter, left, principal investigator for the third phase of CarpetDIEM, Carpet Determination in Entirety Measurements flights, monitors a test from one of the control rooms at NASA’s Armstrong Flight Research Center in Edwards, California. Next to Carpenter is Brian Strovers, chief engineer for Commercial Supersonic Technology. The third phase of CarpetDIEM tested logistics and upgraded ground recording systems in preparation for the acoustic validation phase of the Quesst mission.NASA/Steve Freeman The recording systems are designed to withstand the desert elements, the extreme heat of summer and the cold of winter, and to be resistant to damage from wildlife, such as chewing by rodents, coyotes, and foxes.
      “When we get to Phase 2 of the Quesst mission, we expect to be doing these recordings of sonic thumps for up to nine months,” Cliatt said. “We need to be able to have instrumentation and operations that can facilitate such a long deployment.”
      Another lesson learned – setup time for the recording stations was just under an hour, compared to the anticipated 2 1/2 hours. Given the performance of the systems, the team will assess whether they need to visit all the sites every day of Phase 2 testing.
      The team also learned about the coordination and documentation processes needed for such research, both with internal organizations, such as NASA Armstrong’s Environmental and Safety offices, and with outside parties including:
      The U.S. Bureau of Land Management, which gave approval to use public lands for the testing Law enforcement, which helped secure the test site The Federal Aviation Administration, which gave approval for NASA jets to fly outside the Edwards Air Force Base restricted airspace in order to conduct a portion of the CarpetDIEM tests To prepare for Quesst Phase 2, researchers expect to conduct practice sessions in 2024, incorporating all the lessons learned and best practices from all three phases of CarpetDIEM.
      Last Updated Feb 22, 2024 EditorDede DiniusContactJim Skeenjames.r.skeen@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Aeronautics Technology Commercial Supersonic Technology Low Boom Flight Demonstrator Quesst (X-59) Quesst: The Flights Supersonic Flight Explore More
      5 min read Math, Mentorship, Motherhood: Behind the Scenes with NASA Engineers
      Article 4 hours ago 4 min read NASA Center Boosted YF-12 Supersonic Engine Research
      Article 9 hours ago 4 min read NASA Selects University Teams to Explore Innovative Aeronautical Research
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Quesst: The Mission
      Armstrong Aeronautics Projects
      NASA Aircraft
      View the full article
    • By NASA
      4 min read
      Ride the Wave of Radio Astronomy During the Solar Eclipse  
      GAVRT DSS-28 dish at the NASA Deep Space Communications Complex near Goldstone, California. NASA/Russell Torres Students and science enthusiasts are invited to catch a real-time look at radio astronomy as scientists explore magnetic hotspots on the Sun during a live, virtual solar eclipse event on April 8, 2024.
      A massive, 34-meter telescope once used by NASA’s Deep Space Network to communicate with spacecraft will point towards the Sun during the solar eclipse that day. The Moon’s position in front of the Sun will help the antenna detect radio waves from solar active regions in more detail than is usually possible. 
      The Solar Patrol team at California’s Lewis Center for Educational Research, in partnership with NASA’s Jet Propulsion Laboratory, will remotely operate the Goldstone Apple Valley Radio Telescope (GAVRT) while sharing observations and commentary during an interactive webinar open for the public. 
      Scientists and students regularly use the single-dish GAVRT antenna, located in the Mojave Desert of California, to scan the Sun. They use the observations to build maps of radio waves formed along strong magnetic field lines in the outer atmosphere of the Sun. By studying these images, researchers can measure the strength and structure of those powerful magnetic regions. These observations offer insight into magnetically driven processes on the Sun, like solar flares and coronal mass ejections, which generate space weather events that can interfere with satellite electronics, radio communications and GPS signals, spacecraft orbits, and power grids on Earth. 
      During normal solar observing, GAVRT can only detect and distinguish relatively large features on the Sun. A solar eclipse offers a unique opportunity for GAVRT to capture sharper and more refined information about the magnetic field structure in the solar active regions that are often marked by sunspots.
      “It’s special during the eclipse because, as the Moon is passing in front of an active region, that really sharp edge of the Moon covers up more and more of the structure in that active region,” says Marin Anderson, a research scientist at NASA’s Jet Propulsion Laboratory and GAVRT Solar Patrol scientist. 
      Anderson explains how, as the Moon blocks a portion of the active region, it’s easier to tell what part of the active region the radio emissions are coming from. 
      “It’s basically a way of probing magnetic field structures in the corona of the Sun in a way that we wouldn’t be able to unless an eclipse was happening.” 
      Anyone in the world can join the live-streamed webinar on April 8 from 1-3:30 p.m. EDT (10 a.m. to 12:30 p.m. PDT) and ask the hosts questions as a partial eclipse becomes visible in California. Participants will be able to see the telescope controls, data visualization tools like Helioviewer, incoming radio data, a map of active hot spot regions, and imagery of the eclipsed Sun at radio wavelengths. 
      Eclipse maximum, as observed by GAVRT in radio waves at 6.00 GHz and 8.45 GHz, on October 14, 2023. Click the arrow to see the post-eclipse Sun. NASA/Thangasamy Velusamy Post-eclipse image of the Sun, as observed by GAVRT at 6.00 GHz and 8.45 GHz, on October 14, 2023. One of the active regions monitored by GAVRT during the eclipse is visible as the bright region in the lower left quadrant of the Sun. Click the arrow to see the eclipsed Sun. NASA/Thangasamy Velusamy

      GAVRT was awarded a NASA grant to carry out observations during both the 2023 and 2024 solar eclipses in the U.S. GAVRT supports an open science framework by making all data and radio maps available for viewing and downloading by the public. Images collected during the eclipse will be posted online with instructions on how to run software and analyze the data. 
      The Solar Patrol team hopes the public webinar inspires people to become active members of the GAVRT program where they can learn to remotely operate the telescope themselves while taking part in data analysis and scientific discovery. 
      “I think one of the really great aspects of GAVRT Solar Patrol is that it connects any participant, but particularly students, with the Sun, beyond what they see and experience every day from the star,” Anderson says. “It’s seeing the Sun at radio wavelengths and being able to connect different parts of the electromagnetic spectrum with unique physics that’s happening on the Sun.”
      Since its launch in 1997, GAVRT has offered many opportunities to combine science observations with education and outreach. In addition to Solar Patrol, GAVRT is used in campaigns where participants can study Jupiter’s radiation belts, monitor radio emissions from black holes, or search for extraterrestrial intelligence.
      Anderson says giving students the tools to do science themselves empowers them. 
      “It’s a really hands-on process and I think the way to get kids excited and invested in not only solar science but the scientific process in general.” 
      To register for the GAVRT April 8 eclipse livestream event, visit: https://register.gotowebinar.com/register/4920123655757293655
      For other ways to get involved in GAVRT, including signing up a classroom to participate in observations, contact: mc@lcer.org or visit gavrt.lewiscenter.org.
      By Rose Brunning, Communications Lead
      NASA Heliophysics Digital Resource Library

      Last Updated Feb 21, 2024 Related Terms
      2024 Solar Eclipse Eclipses Skywatching Solar Eclipses Keep Exploring Discover More on the 2024 Solar Eclipse
      Shadow Notes

      Eclipse 2024 Science

      Eclipse 2024 Citizen Science


      View the full article
    • By NASA
      In 1994, a joint NASA and Department of Defense (DOD) mission called Clementine dramatically changed our view of the Moon. As the first U.S. mission to the Moon in more than two decades, Clementine’s primary objectives involved technology demonstrations to test lightweight component and sensor performance. The lightweight sensors aboard the spacecraft returned 1.6 million digital images, providing the first global multispectral and topographic maps of the Moon. Data from a radar instrument indicated that large quantities of water ice may lie in permanently shadowed craters at lunar south pole, while other polar regions may remain in near permanent sunlight. Although a technical problem prevented a planned flyby of an asteroid, Clementine’s study of the Moon proved that a technology demonstration mission can accomplish significant science.

      Left: The Clementine engineering model on display at the Smithsonian Institution’s National Air and Space Museum (NASM) in Washington, D.C. Image credit: courtesy NASM. Right: Schematic illustration showing Clementine’s major components and sensors.
      The DOD’s Strategic Defense Initiative Organization, renamed the Ballistic Missile Defense Organization in 1993, directed the Clementine project, formally called the Deep Space Program Science Experiment. The Naval Research Laboratory (NRL) in Washington, D.C., managed the mission design, spacecraft manufacture and test, launch vehicle integration, ground support, and flight operations. The Lawrence Livermore National Laboratory (LLNL) in Livermore, California, provided the nine science instruments, including lightweight imaging cameras and ranging sensors. NASA’s Goddard Space Flight Center in Beltsville, Maryland, provided trajectory and mission planning support for the lunar phase, and NASA’s Jet Propulsion Laboratory in Pasadena, California, provided trajectory and mission planning for the asteroid encounter and deep space communications and tracking through the Deep Space Network. Clementine’s primary planned mission involved the testing of new lightweight satellite technologies in the harsh deep space environment. As a secondary mission, Clementine would observe the Moon for two months using its multiple sensors, then leave lunar orbit and travel to 1620 Geographos, a 1.6-mile-long, elongated, stony asteroid. At a distance of 5.3 million miles from Earth, Clementine would fly within 62 miles of the near-Earth asteroid, returning images and data using its suite of sensors.

      Left: Technicians prepare Clementine for a test in an anechoic chamber prior to shipping to the launch site. Middle: Workers lower the payload shroud over Clementine already mounted on its Titan IIG launch vehicle. Right: Liftoff of Clementine from Vandenberg Air Force, now Space Force, Base in California.
      The initial idea behind a joint NASA/DOD technology demonstration mission began in 1990, with funding approved in March 1992 to NRL and LLNL to start design of Clementine and its sensors, respectively. In an incredibly short 22 months, the spacecraft completed design, build, and testing to prepare it for flight. Clementine launched on Jan. 25, 1994, from Space Launch Complex 4-West at Vandenberg Air Force, now Space Force, Base in California atop a Titan IIG rocket.

      Trajectory of Clementine from launch to lunar orbit insertion. Image credit: courtesy Lawrence Livermore National Laboratory.
      The spacecraft spent the next eight days in low Earth orbit checking out its systems. On Feb. 3, a solid rocket motor fired to place it on a lunar phasing loop trajectory that included two Earth flybys to gain enough energy to reach the Moon. During the first orbit, the spacecraft jettisoned the Interstage Adapter Subsystem that remained in a highly elliptical Earth orbit for three months collecting radiation data as it passed repeatedly through the Van Allen radiation belts. On Feb. 19, Clementine fired its own engine to place the spacecraft into a highly elliptical polar lunar orbit with an 8-hour period. A second burn two days later placed Clementine into its 5-hour mapping orbit. The first mapping cycle began on Feb. 26, lasting one month, and the second cycle ended on April 21, followed by special observations.

      Left: Composite image of the Moon’s south polar region. Middle left: Image of Crater Tycho. Middle right: Image of Crater Rydberg. Right: Composite image of the Moon’s north polar region.
      During the first month of mapping, the low point of Clementine’s orbit was over the southern hemisphere to enable higher resolution imagery and laser altimetry over the south polar regions. Clementine adjusted its orbit to place the low point over the northern hemisphere for the second month of mapping to image the north polar region at higher resolution. Clementine spent the final two weeks in orbit filling in any gaps and performing extra studies looking for ice in the north polar region. For 71 days and 297 lunar orbits, Clementine imaged the Moon, returning 1.6 million digital images, many at a resolution of 330 feet. It mapped the Moon’s entire surface including the polar regions at wavelengths from near ultraviolet through visible to far infrared. The laser altimetry provided the first global topographic map of the Moon. Similar data from Apollo missions only mapped the equatorial regions of the Moon that lay under the spacecraft’s orbital path. Radio tracking of the spacecraft refined our knowledge of the Moon’s gravity field. A finding with significant application to future exploration missions, Clementine found areas near the polar regions where significant amounts of water ice may exist in permanently shadowed crater floors. Conversely, Clementine found other regions near the poles that may remain in near perpetual sunlight, providing an abundant energy source for future explorers. The Dec. 16, 1994, issue of Science, Vol. 266, No. 5192, published early results from Clementine. The Clementine project team assembled a series of lessons learned from the mission to aid future spacecraft development and operations.

      Left: A global map of the Moon created from Clementine images. Right: A global topographic map of the Moon based on Clementine data.

      Left: Composite image of Earth taken by Clementine from lunar orbit. Middle left: Colorized image of the full Earth over the lunar north pole. Middle right: Color enhanced view of the Moon lit by Earth shine, the solar corona, and the planet Venus. Right: Color enhanced image of the Earthlit Moon, the solar corona, and the planets Saturn, Mars, and Mercury.
      Its Moon observation time over, Clementine left lunar orbit on May 5, heading for Geographos via two more Earth gravity-assist flybys. Unfortunately, two days later a computer glitch caused one of the spacecraft’s attitude control thrusters to misfire for 11 minutes, expending precious fuel and sending Clementine into an 80-rotations-per-minute spin. The problem would have significantly reduced data return from the asteroid flyby planned for August and managers decided to keep the spacecraft in an elliptical geocentric orbit. A power supply failure in June rendered Clementine’s telemetry unintelligible. On July 20, lunar gravity propelled the spacecraft into solar orbit and the mission officially ended on Aug. 8. Ground controllers briefly regained contact between Feb. 20 and May 10, 1995, but Clementine transmitted no useful data.
      Despite the loss of the Geographos flyby, Clementine left a lasting legacy. The mission demonstrated that a flight primarily designed as a technology demonstration can accomplished significant science. The data Clementine returned revolutionized our knowledge of lunar history and evolution. The discovery of the unique environments at the lunar poles, including the probability of large quantities of water ice in permanently shadowed regions there, changed the outlook for future scientific missions and human exploration. Subsequent science missions, such as NASA’s Lunar Prospector and Lunar Reconnaissance Orbiter, China’s Chang’e spacecraft, and India’s Chandrayaan spacecraft, all built on the knowledge that Clementine first obtained. Current uncrewed missions target the lunar polar regions to add ground truth to the orbital observations, and NASA’s Artemis program intends to land the first woman and the first person of color in that region as a step toward sustainable lunar exploration.
      Explore More
      3 min read NASA Goddard’s Beginnings in Project Vanguard
      Article 7 hours ago 8 min read 55 Years Ago: President Nixon Establishes Space Task Group to Chart Post-Apollo Plans
      Article 3 days ago 13 min read 50 Years Ago: Skylab 4 Astronauts Return From Record-Breaking Spaceflight
      Article 1 week ago View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Educators test construction box pinhole projectors for solar eclipse viewing.Credit: NASA/Sara Lowthian-Hanna On Monday, April 8, Northeast Ohioans will get a once-in-a-lifetime chance to see a total solar eclipse. During this rare natural phenomenon, the Moon will pass between the Sun and Earth, completely blocking the face of the Sun and darkening the sky for nearly four minutes.
      Teachers, librarians, and community leaders from across Northeast Ohio came to NASA’s Glenn Research Center in Cleveland on Jan. 29 to learn how to conduct eclipse events safely and effectively. NASA education program specialists taught educators about the science behind solar eclipses, connections to NASA’s study of the Sun, and eclipse-related student engagement activities.
      An educator tests a model of a total solar eclipse viewing device she constructed.Credit: NASA/Sara Lowthian-Hanna NASA subject matter experts taught the educators how to make pinhole projectors and models of the eclipse, and how ultraviolet (UV) beads react with UV light. They talked about eye and face protection including the importance of viewing the eclipse safely through glasses that comply with ISO 12312-2:2015.
      “During totality, unusual things can happen,” said Cathy Graves, STEM integration manager, Office of STEM Engagement. “Because it’s going to feel like its twilight outside, the animals in nature will feel confused. Birds that chirp during the day may get quiet, and animals that are active at night may become active during the day. There are many things children can look for and observe during the eclipse.”
      Educators from Northeast Ohio learn how to construct box pinhole projectors that their students can build and use to safely view the total solar eclipse.Credit: NASA/Sara Lowthian-Hanna Educators also had the opportunity to tour NASA Glenn’s Simulated Lunar Operations Laboratory and Graphics and Visualization Lab. Many teachers say they left feeling inspired.
      “Today was awesome. This experience brought home why I do this, and I felt like the student,” said Monica Reese, science teacher, Cleveland Metropolitan School District. “Space is fascinating, and my students love it. I teach physical science, so it’s one of the units we teach. I usually teach it in the spring, but they want to know about it now!
      View the full article
  • Check out these Videos

  • Create New...