Jump to content

NASA's InSight and Mars Reconnaissance Orbiter Team Up to Make Science Discovery (Media Briefing)


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Perseverance rover discovered “leopard spots” on a reddish rock nicknamed “Cheyava Falls” in Mars’ Jezero Crater in July 2024. Scientists think the spots may indicate that, billions of years ago, the chemical reactions in this rock could have supported microbial life; other explanations are being considered.NASA/JPL-Caltech/MSSS An annotated version of the image of “Cheyava Falls” indicates the markings akin to leopard spots, which have particularly captivated scientists, and the olivine in the rock. The image was captured by the WATSON instrument on NASA’s Perseverance Mars rover on July 18.NASA/JPL-Caltech/MSSS The six-wheeled geologist found a fascinating rock that has some indications it may have hosted microbial life billions of years ago, but further research is needed.
      A vein-filled rock is catching the eye of the science team of NASA’s Perseverance rover. Nicknamed “Cheyava Falls” by the team, the arrowhead-shaped rock contains fascinating traits that may bear on the question of whether Mars was home to microscopic life in the distant past.
      Analysis by instruments aboard the rover indicates the rock possesses qualities that fit the definition of a possible indicator of ancient life. The rock exhibits chemical signatures and structures that could possibly have been formed by life billions of years ago when the area being explored by the rover contained running water. Other explanations for the observed features are being considered by the science team, and future research steps will be required to determine whether ancient life is a valid explanation.
      The rock — the rover’s 22nd rock core sample — was collected on July 21, as the rover explored the northern edge of Neretva Vallis, an ancient river valley measuring a quarter-mile (400 meters) wide that was carved by water rushing into Jezero Crater long ago.
      “Cheyava Falls” (left) shows the dark hole where NASA’s Perseverance took a core sample; the white patch is where the rover abraded the rock to investigate its composition. A rock nicknamed “Steamboat Mountain” (right) also shows an abrasion patch. This image was taken by Mastcam-Z on July 23.NASA/JPL-Caltech/ASU/MSSS NASA’s Perseverance used its Mastcam-Z instrument to view the “Cheyava Falls” rock sample within the rover’s drill bit. Scientists believe markings on the rock contain fascinating traits that may bear on the question of whether Mars was home to microscopic life in the distant past.NASA/JPL-Caltech/ASU/MSSS “We have designed the route for Perseverance to ensure that it goes to areas with the potential for interesting scientific samples,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “This trip through the Neretva Vallis riverbed paid off as we found something we’ve never seen before, which will give our scientists so much to study.”
      Multiple scans of Cheyava Falls by the rover’s SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals) instrument indicate it contains organic compounds. While such carbon-based molecules are considered the building blocks of life, they also can be formed by non-biological processes.
      “Cheyava Falls is the most puzzling, complex, and potentially important rock yet investigated by Perseverance,” said Ken Farley,Perseverance project scientist of Caltech in Pasadena. “On the one hand, we have our first compelling detection of organic material, distinctive colorful spots indicative of chemical reactions that microbial life could use as an energy source, and clear evidence that water — necessary for life — once passed through the rock. On the other hand, we have been unable to determine exactly how the rock formed and to what extent nearby rocks may have heated Cheyava Falls and contributed to these features.”
      NASA’s Perseverance rover used its Mastcam-Z instrument to capture this 360-degree panorama of a region on Mars called “Bright Angel,” where an ancient river flowed billions of years ago. “Cheyava Falls” was discovered in the area slightly right of center, about 361 feet (110 meters) from the rover.NASA/JPL-Caltech/ASU/MSSS Other details about the rock, which measures 3.2 feet by 2 feet (1 meter by 0.6 meters) and was named after a Grand Canyon waterfall, have intrigued the team, as well.
      How Rocks Get Their Spots
      In its search for signs of ancient microbial life, the Perseverance mission has focused on rocks that may have been created or modified long ago by the presence of water. That’s why the team homed in on Cheyava Falls.
      “This is the kind of key observation that SHERLOC was built for — to seek organic matter as it is an essential component of a search for past life,” said SHERLOC’s principal investigator Kevin Hand of NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission.
      Running the length of the rock are large white calcium sulfate veins. Between those veins are bands of material whose reddish color suggests the presence of hematite, one of the minerals that gives Mars its distinctive rusty hue.
      When Perseverance took a closer look at these red regions, it found dozens of irregularly shaped, millimeter-size off-white splotches, each ringed with black material, akin to leopard spots. Perseverance’s PIXL (Planetary Instrument for X-ray Lithochemistry) instrument has determined these black halos contain both iron and phosphate.
      As shown in this graphic, astrobiologists catalog a seven-step scale, called the CoLD (Confidence of Life Detection) scale, to research whether a sample could indicate life. This “Cheyava Falls” sample is an example of Step One: “Detect possible signal.” Much additional research must be conducted to learn more.NASA/Aaron Gronstal “These spots are a big surprise,” said David Flannery, an astrobiologist and member of the Perseverance science team from the Queensland University of Technology in Australia. “On Earth, these types of features in rocks are often associated with the fossilized record of microbes living in the subsurface.”
      Spotting of this type on sedimentary terrestrial rocks can occur when chemical reactions involving hematite turn the rock from red to white. Those reactions can also release iron and phosphate, possibly causing the black halos to form. Reactions of this type can be an energy source for microbes, explaining the association between such features and microbes in a terrestrial setting.
      In one scenario the Perseverance science team is considering, Cheyava Falls was initially deposited as mud with organic compounds mixed in that eventually cemented into rock. Later, a second episode of fluid flow penetrated fissures in the rock, enabling mineral deposits that created the large white calcium sulfate veins seen today and resulting in the spots.
      Another Puzzle Piece
      While both the organic matter and the leopard spots are of great interest, they aren’t the only aspects of the Cheyava Falls rock confounding the science team. They were surprised to find that these veins are filled with millimeter-size crystals of olivine, a mineral that forms from magma. The olivine might be related to rocks that were formed farther up the rim of the river valley and that may have been produced by crystallization of magma.
      If so, the team has another question to answer: Could the olivine and sulfate have been introduced to the rock at uninhabitably high temperatures, creating an abiotic chemical reaction that resulted in the leopard spots?
      “We have zapped that rock with lasers and X-rays and imaged it literally day and night from just about every angle imaginable,” said Farley. “Scientifically, Perseverance has nothing more to give. To fully understand what really happened in that Martian river valley at Jezero Crater billions of years ago, we’d want to bring the Cheyava Falls sample back to Earth, so it can be studied with the powerful instruments available in laboratories.”
      More Mission Information
      A key objective of Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and as the first mission to collect and cache Martian rock and regolith.
      NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
      The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
      NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
      For more about Perseverance:
      science.nasa.gov/mission/mars-2020-perseverance
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Erin Morton
      Headquarters, Washington
      202-358-1600 / 202-805-9393
      karen.c.fox@nasa.gov / erin.morton@nasa.gov
      2024-103
      Share
      Details
      Last Updated Jul 25, 2024 Related Terms
      Perseverance (Rover) Astrobiology Jet Propulsion Laboratory Mars Mars 2020 Mars Sample Return (MSR) The Solar System Explore More
      4 min read UPDATED: 10 Things for Mars 10
      Scientists from around the world are gathering this week in California to take stock of…
      Article 2 days ago 6 min read NASA-Funded Studies Explain How Climate Is Changing Earth’s Rotation
      Article 6 days ago 3 min read New Evidence Adds to Findings Hinting at Network of Caves on Moon
      An international team of scientists using data from NASA’s LRO (Lunar Reconnaissance Orbiter) has discovered…
      Article 7 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      Col. Nick Hague and his crewmates from the NASA SpaceX Crew-9 mission met with Airmen and Guardians to speak with and give thanks to representatives of military units who make manned spaceflight missions possible.

      View the full article
    • By NASA
      3 min read
      Meet NASA Interns Shaping Future of Open Science
      Intern Lena Young, whose work revolves around DEIA and open science, stands next to a NASA sign at NASA’s Earth Information Center in Washington, D.C. Photo courtesy of Lena Young Students at NASA’s Office of the Chief Science Data Officer (OCSDO) are working to promote open science during the summer 2024 internship session. Their projects fall across a variety of areas, including user experience, policy, and DEIA (Diversity, Equity, Inclusion, and Accessibility). 
      Lena Young: Increasing DEIA Engagement
      Lena Young, a doctoral candidate in the Creative Leadership for Innovation and Change program at the University of the Virgin Islands in St. Thomas, envisions equitable space societies 100 – 300 years in the future as part of her dissertation. Her NASA internship project involves researching ways to make science more accessible for different groups and interacting with NASA leadership to assess how well they are engaging historically underserved or excluded communities.
      Young also worked with her mentors to find overlap between her internship project and her PhD work as a futurist. “In 30 years, once NASA has achieved their goals, what would open science look like?” Young said. “I want to see what different futures I can create for open science and DEIA engagement.” 
      Becca Michelson: Advancing Policy
      Becca Michelson has a passion for increasing the availability of scientific information. A soon-to-be-graduate in physics and astronomy from Smith College in Northampton, Massachusetts, she was drawn to an internship role in researching the current state of open science policy for the OCSDO. By understanding the challenges and opportunities in this area, she’s helping NASA better support researchers in making their science accessible to all.
      “Open science makes this a more inclusive field, where if I’m an early career scientist, I can build on the science that other people who are experts in the field have done,” Michelson said. In the future, she hopes to implement open science principles into her own research in astronomy, drawing from the best practices she has learned at NASA.
      Salma Elsayed-Ali: Bridging Science, User Experience
      Salma Elsayed-Ali is on a mission to bridge the gap between science and usability. She recently completed her PhD in Information Science with a focus on Human-Computer Interaction from the University of Maryland, College Park. Her NASA internship project involves conducting UI/UX (User Interface/User Experience) research on some of the OCSDO’s scientific products, most notably the Open Science 101 online course.
      Elsayed-Ali became interested in open science during the height of the COVID-19 pandemic, when she conducted UI/UX research on open data sites that provided the public with real-time information about the spread of the virus. This experience sparked her interest in helping users reap the benefits of open science as part of an internship with NASA. 
      In improving the OCSDO’s open science interfaces, Elsayed-Ali has acted as the product lead on a UI/UX research project for the first time. “I was drawn to this project as it was an opportunity to advocate for both end users and the advancement of open science,” Elsayed-Ali said. “I have really enjoyed brainstorming creative, practical solutions that enhance the user experience and simultaneously save the product team time and resources.”
      By helping open science at NASA to thrive, these interns are ushering in a future of greater access to data and scientific research. Learn more about NASA internships at the NASA Internship Programs page.
      Learn to navigate the principles and practices of open science with the Open Science 101 online course.
      By Lauren Leese 
      Web Content Strategist for the Office of the Chief Science Data Officer 
      Share








      Details
      Last Updated Jul 25, 2024 Related Terms
      Open Science Explore More
      4 min read Mapping the Red Planet with the Power of Open Science


      Article


      4 weeks ago
      4 min read NASA-IBM Collaboration Develops INDUS Large Language Models for Advanced Science Research


      Article


      1 month ago
      4 min read Marshall Research Scientist Enables Large-Scale Open Science


      Article


      1 month ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By European Space Agency
      Participants of ESA’s Industry Space Days (ISD 2024) share insights and tips on how to make the most of this space technology business event on 18–19 September at ESA-ESTEC in Noordwijk, The Netherlands.
      View the full article
    • By NASA
      Boeing’s Starliner spacecraft that launched NASA’s Crew Flight Test astronauts Butch Wilmore and Suni Williams to the International Space Station is pictured docked to the Harmony module’s forward port. This long-duration photograph was taken at night from the orbital complex as it soared 258 miles above western China. NASA and Boeing will host a news conference with mission leadership at 11:30 a.m. EDT Thursday, July 25, to provide the latest status of the agency’s Boeing Crew Flight Test aboard the International Space Station. NASA previously planned an audio-only media teleconference to host the discussion.
      The agency will provide live coverage on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA content through a variety of platforms, including social media.
      Participants include:
      Steve Stich, manager, NASA’s Commercial Crew Program Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing United States-based media seeking to attend in person must contact the newsroom at NASA’s Johnson Space Center in Houston no later than 9:30 a.m. EDT Thursday, July 25, at 281-483-5111 or jsccommu@mail.nasa.gov. U.S. and international media interested in participating by phone must contact NASA Johnson or NASA’s Kennedy Space Center in Florida at ksc-newsroom@mail.nasa.gov by 10:30 a.m. the day of the event. A copy of NASA’s media accreditation policy is online.
      Engineering teams with NASA and Boeing recently completed ground hot fire testing of a Starliner reaction control system thruster at White Sands Test Facility in New Mexico. The test series involved firing the engine through similar in-flight conditions the spacecraft experienced during its approach to the space station, as well as various stress-case firings for what is expected during Starliner’s undocking and the deorbit burn that will position the spacecraft for a landing in the southwestern United States. Teams are analyzing the data from these tests, and leadership plans to discuss initial findings during the briefing.
      NASA astronauts Butch Wilmore and Suni Williams arrived at the orbiting laboratory on June 6, after lifting off aboard a United Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida on June 5. Since their arrival, the duo has been integrated with the Expedition 71 crew, performing scientific research and maintenance activities as needed.
      As part of NASA’s Commercial Crew Program, the mission is an end-to-end test of the Starliner system. Following a successful return to Earth, NASA will begin the process of certifying Starliner for rotational missions to the International Space Station. Through partnership with American private industry, NASA is opening access to low Earth orbit and the space station to more people, science, and commercial opportunities.
      For NASA’s blog and more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Leah Cheshier / Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov / sandra.p.jones@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...