Jump to content

NASA's SpaceX Crew-4: A Scientific Journey


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA and its international partners are sending scientific investigations to the International Space Station on Northrop Grumman’s 21st commercial resupply services mission. Flying aboard the company’s Cygnus spacecraft are tests of water recovery technology and a process to produce stem cells in microgravity, studies of the effects of spaceflight on microorganism DNA and liver tissue growth, and live science demonstrations for students. The mission is scheduled to launch from Cape Canaveral Space Force Station in Florida by early August.
      Read more about some of the research making the journey to the orbiting laboratory:
      Testing materials for packed systems
      Packed bed reactors are systems that use materials such as pellets or beads “packed” inside a structure to increase contact between different phases of fluids, such as liquid and gas. These reactors are used for various applications including water recovery, thermal management, and fuel cells. Scientists previously tested the performance in space of glass beads, Teflon beads, a platinum catalyst, and other packing materials. Packed Bed Reactor Experiment: Water Recovery Series evaluates gravity’s effects on eight additional test articles.

      Results could help optimize the design and operation of packed bed reactors for water filtration and other systems in microgravity and on the Moon and Mars. Insights from the investigation also could lead to improvements in this technology for applications on Earth such as water purification and heating and cooling systems.
      Hardware for the packed bed water recovery reactor experiment. The packing media is visible in the long clear tube.NASA Giving science a whirl
      STEMonstrations Screaming Balloon uses a balloon, a penny, and a hexagonal nut (the kind used to secure a bolt) for a NASA STEMonstration performed and recorded by astronauts on the space station. The penny and the nut are whirled separately inside an inflated balloon to compare the sounds they make. Each STEMonstration illustrates a different scientific concept, such as centripetal force, and includes resources to help teachers further explore the topics with their students.
      NASA astronauts Matthew Dominick and Jeanette Epps prepare for a STEMonstration on the International Space Station.NASA More, better stem cells
      In-Space Expansion of Hematopoietic Stem Cells for Clinical Application (InSPA-StemCellEX-H1) continues testing a technology to produce human hematopoietic stem cells (HSCs) in space. HSCs give rise to blood and immune cells and are used in therapies for patients with certain blood diseases, autoimmune disorders, and cancers.

      The investigation uses a system called BioServe In-space Cell Expansion Platform, or BICEP, which is designed to expand HSCs three hundredfold without the need to change or add new growth media, according to Louis Stodieck, principal investigator at the University of Colorado Boulder. “BICEP affords a streamlined operation to harvest and cryopreserve cells for return to Earth and delivery to a designated medical provider and patient,” said Stodieck.

      Someone in the United States is diagnosed with a blood cancer such as leukemia about every three minutes. Treating these patients with transplanted stem cells requires a donor-recipient match and long-term repopulation of transplanted stem cells. This investigation demonstrates whether expanding stem cells in microgravity could generate far more continuously renewing stem cells.

      “Our work eventually could lead to large-scale production facilities, with donor cells launched into orbit and cellular therapies returned to Earth,” said Stodieck.
       
      NASA astronaut Frank Rubio works on the first test of methods for expanding stem cells in space, StemCellEX-H Pathfinder. The InSPA-StemCellEX-H1 investigation continues this work.NASA DNA repair in space
      Rotifer-B2, an ESA (European Space Agency) investigation, explores how spaceflight affects DNA repair mechanisms in a microscopic bdelloid rotifer, Adineta vaga. These tiny but complex organisms are known for their ability to withstand harsh conditions, including radiation doses 100 times higher than human cells can survive. The organisms are dried, exposed to high radiation levels on Earth, and rehydrated and cultured in an incubator on the station.

      “Previous research indicates that rotifers repair their DNA in space with the same efficiency as on Earth, but that research provided only genetic data,” said Boris Hespeels, co-investigator, of Belgium’s Laboratory of Evolutionary Genetics and Ecology. “This experiment will provide the first visual proof of survival and reproduction during spaceflight,” said Hespeels

      Results could provide insights into how spaceflight affects the rotifer’s ability to repair sections of damaged DNA in a microgravity environment, and could improve the general understanding of DNA damage and repair mechanisms for applications on Earth.
      A culture chamber for the Rotifer-B2 investigation aboard the International Space Station.NASA Growing liver tissue
      Maturation of Vascularized Liver Tissue Construct studies the development in space of bioprinted liver tissue constructs that contain blood vessels. Constructs are tissue samples grown outside the body using bioengineering techniques. Scientists expect the microgravity environment to allow improved cellular distribution throughout tissue constructs.

      “We are especially keen on accelerating the development of vascular networks,” said James Yoo, principal investigator, at the Wake Forest Institute of Regenerative Medicine. “The experimental data from microgravity will provide valuable insights that could enhance the biomanufacturing of vascularized tissues to serve as building blocks to engineer functional organs for transplantation.”
      Image A shows a vascularized tissue construct with interconnected channels, and image B shows a bioprinted human liver tissue construct fabricated with a digital light projection printer. Image C shows the tissue construct connected to a perfusion system, a pump that moves fluid through it.Wake Forest Institute for Regenerative Medicine. This mission also delivers plants for the APEX-09 investigation, which examines plant responses to stressful environments and could inform the design of bio-regenerative support systems on future space missions.
      Melissa Gaskill
      International Space Station Research Communications Team
      NASA’s Johnson Space Center
      Download high-resolution photos and videos of the research mentioned in this article.
      Search this database of scientific experiments to learn more about those mentioned in this article.
      Keep Exploring Discover More Topics From NASA
      Latest News from Space Station Research
      Commercial Resupply
      Station Science 101: Biology and Biotechnology
      Space Station Technology Demonstration
      View the full article
    • By NASA
      Digital content creators are invited to register to attend the launch of the ninth SpaceX Dragon spacecraft and Falcon 9 rocket that will carry astronauts to the International Space Station for a science expedition mission. This mission is part of NASA’s Commercial Crew Program. 
      Launch of NASA’s SpaceX Crew-9 mission is targeted for no earlier than mid-August from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. The launch will carry NASA astronauts Zena Cardman, commander; Nick Hague, pilot; and Stephanie Wilson, mission specialist; along with Roscosmos cosmonaut Alexander Gorbunov, mission specialist. 
      If your passion is to communicate and engage the world online, then this is the event for you! Seize the opportunity to see and share the #Crew9 mission launch. 
      A maximum of 50 social media users will be selected to attend this two-day event and will be given access similar to news media. 
      NASA Social participants will have the opportunity to: 
      View a crewed launch of the SpaceX Falcon 9 rocket and Dragon spacecraft  Tour NASA facilities at Kennedy Space Center  Meet and interact with Crew-9 subject matter experts  Meet fellow space enthusiasts who are active on social media  Registration for this event opens on Wednesday, July 17, and the deadline to apply is at 10 a.m. EDT on Monday, July 22. All social applications will be considered on a case-by-case basis.
      APPLY NOW 
      Do I need to have a social media account to register? 
       Yes. This event is designed for people who: 
      Actively use multiple social networking platforms and tools to disseminate information to a unique audience.  Regularly produce new content that features multimedia elements.  Have the potential to reach a large number of people using digital platforms, or reach a unique audience, separate and distinctive from traditional news media and/or NASA audiences.  Must have an established history of posting content on social media platforms.  Have previous postings that are highly visible, respected and widely recognized.  Users on all social networks are encouraged to use the hashtag #NASASocial and #Crew9. Updates and information about the event will be shared on X via @NASASocial and @NASAKennedy, and via posts to Facebook and Instagram. 
      How do I register? 
      Registration for this event opens on Wednesday, July 17, and the deadline to apply is at 10 a.m. EDT on Monday, July 22. All social applications will be considered on a case-by-case basis.
      Can I register if I am not a U.S. citizen? 
      Because of the security deadlines, registration is limited to U.S. citizens. If you have a valid permanent resident card, you will be processed as a U.S. citizen. 
      When will I know if I am selected? 
      After registrations have been received and processed, an email with confirmation information and additional instructions will be sent to those selected. We expect to send the acceptance notifications by August 7.
      What are NASA Social credentials? 
      All social applications will be considered on a case-by-case basis. Those chosen must prove through the registration process they meet specific engagement criteria. 
      If you do not make the registration list for this NASA Social, you still can attend the launch offsite and participate in the conversation online. Find out about ways to experience a launch here. 
      What are the registration requirements? 
      Registration indicates your intent to travel to NASA’s Kennedy Space Center in Florida and attend the two-day event in person. You are responsible for your own expenses for travel, accommodations, food, and other amenities. 
      Some events and participants scheduled to appear at the event are subject to change without notice. NASA is not responsible for loss or damage incurred as a result of attending. NASA, moreover, is not responsible for loss or damage incurred if the event is cancelled with limited or no notice. Please plan accordingly. 
      Kennedy is a government facility. Those who are selected will need to complete an additional registration step to receive clearance to enter the secure areas. 
      IMPORTANT: To be admitted, you will need to provide two forms of unexpired government-issued identification; one must be a photo ID and match the name provided on the registration. Those without proper identification cannot be admitted. 
      For a complete list of acceptable forms of ID, please visit: NASA Credentialing Identification Requirements. 
      All registrants must be at least 18 years old. 
      What if the launch date changes? 
      Many different factors can cause a scheduled launch date to change multiple times. If the launch date changes, NASA may adjust the date of the NASA Social accordingly to coincide with the new target launch date. NASA will notify registrants of any changes by email. 
      If the launch is postponed, attendees will be invited to attend a later launch date. NASA cannot accommodate attendees for delays beyond 72 hours. 
      NASA Social attendees are responsible for any additional costs they incur related to any launch delay. We strongly encourage participants to make travel arrangements that are refundable and/or flexible. 
      What if I cannot come to the Kennedy Space Center? 
      If you cannot come to the Kennedy Space Center and attend in person, you should not register for the NASA Social. You can follow the conversation online using #NASASocial.  
      You can watch the launch on NASA+ or plus.nasa.gov. NASA will provide regular launch and mission updates on @NASA, @NASAKennedy, and @Commercial_Crew, as well as on NASA’s Commercial Crew Program blog. 
      If you cannot make this NASA Social, don’t worry; NASA is planning many other Socials in the near future at various locations! 
      Keep Exploring Discover More Topics From NASA
      International Space Station
      Launch Pad 39B
      Kennedy Space Center
      Commercial Crew Program
      View the full article
    • By NASA
      Official NASA’s SpaceX Crew-9 portraits with Zena Cardman, Nick Hague, Stephanie Wilson and Aleksandr Gorbunov. Credit: NASA Media accreditation now is open for the launch of NASA’s ninth rotational mission of a SpaceX Falcon 9 rocket and Dragon spacecraft that will carry astronauts to the International Space Station for a science expedition. This mission is part of NASA’s Commercial Crew Program.
      Launch of NASA’s SpaceX Crew-9 mission is targeted for no earlier than mid-August from Launch Complex 39A at the agency’s Kennedy Space Center in Florida, pending completion of the company’s ongoing Falcon 9 investigation. Crew safety and mission assurance are top priorities for NASA and its partners.
      The launch will carry NASA astronauts Zena Cardman, commander; Nick Hague, pilot; and Stephanie Wilson, mission specialist; along with Roscosmos cosmonaut Alexander Gorbunov, mission specialist. This is the first spaceflight for Cardman and Gorbunov, the second mission to the orbiting laboratory for Hague, and fourth spaceflight for Wilson, who has spent 42 days in space aboard three space shuttle Discovery missions – STS-120, STS-121, and STS-131.
      U.S. media, international media without U.S. citizenship, and U.S. citizens representing international media organizations must apply by 11:59 p.m. EDT on Wednesday, July 31. All accreditation requests must be submitted online at:
      https://media.ksc.nasa.gov
      NASA’s media accreditation policy is online. For questions about accreditation or special logistical requests, email: ksc-media-accreditat@mail.nasa.gov. Requests for space for satellite trucks, tents, or electrical connections are due by Thursday, Aug. 1.
      For other questions, please contact NASA Kennedy’s newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371.
      For launch coverage and more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov
      Share
      Details
      Last Updated Jul 17, 2024 LocationNASA Headquarters Related Terms
      Humans in Space Commercial Crew Commercial Space International Space Station (ISS) ISS Research Johnson Space Center Kennedy Space Center View the full article
    • By NASA
      When the first humans travel to the Red Planet, they will need to know how to repair and maintain equipment, grow their own food, and stay healthy, all while contending with Earth-to-Mars communication delays. They must also find ways to build comradery and have fun. 

      The first all-volunteer CHAPEA (Crew Health and Performance Exploration Analog) crew accomplished all of that and more during their 378-day analog mission on the surface of Mars.  

      Living in the isolated Mars Dune Alpha, a 3D-printed, 1,700-square-foot habitat, crew members Kelly Haston, Ross Brockwell, Nathan Jones, and Anca Selariu faced the rigors of a simulated Mars expedition, enduring stressors akin to those of a real mission to the Red Planet. They also celebrated holidays and birthdays, gave each other haircuts, and found moments of levity in isolation. Their journey will help scientists understand the challenges of deep space missions and offer invaluable insights into the resilience of the human spirit. 
      NASA’s CHAPEA (Crew Health and Performance Exploration Analog) crew member Kelly Haston greets Deputy Director of Flight Operations Kjell Lindgren and Johnson Space Center Deputy Director Stephen Koerner at the habitat’s door. NASA/Josh Valcarcel As the crew concluded their journey on July 6, NASA astronaut and Deputy Director of Flight Operations Kjell Lindgren opened the habitat door and welcomed them home. 

      “The crew and their families have committed a year of their lives in service to NASA, the country, and humanity’s exploration of space. Thank you to for committing yourselves to research that will enable our future exploration of space,” he said. “Your fingerprints are going to be an indelible part of those first footprints on Mars.” 

      The CHAPEA crew brought their diverse backgrounds and experiences to the mission, collaborating with NASA’s scientists and engineers to collect data that will provide insight into maintaining crew health and performance for future missions to Mars. 
      PHOTO DATE: July 06, 2024 LOCATION: Bldg. 220 – CHAPEA Habitat SUBJECT: ASA Crew Health and Performance Exploration Analog (CHAPEA) Mars Analog Mission 1 Egress Event with crew Anca Selariu, Nathan Jones, Kelly Haston, Ross Brockwell. PHOTOGRAPHER: NASA/Josh ValcarcelNASA/Josh Valcarcel Kelly Haston: Mission Commander and Pioneering Scientist 

      Haston, the mission commander, is a research scientist who builds human disease models. She has spearheaded innovative stem cell-based projects, deriving multiple cell types for work in infertility, liver disease, and neurodegeneration. Her role was pivotal in maintaining crew morale and ensuring the success of daily operations. 
      She highlighted the importance of teamwork and adaptability in a mission with such high stakes.
      “We had to rely on each other and our training to navigate the challenges we faced,” she said. “Every day brought new obstacles, but also new opportunities for growth and learning.” 

      Nathan Jones: Medical Officer and Expert Communicator 

      Jones, the crew medical officer, used his emergency and international medicine experience to tackle the unique challenges of the Mars mission. His expertise in problem-solving and effective communication in a time-sensitive and resource-limited environment was essential due to the approximately one-hour transmission delay. “Even something as simple as when to communicate is important,” said Jones. The crew had to consider what observations were essential to report to each other or Mission Control to avoid overburdening the team or unnecessarily using the limited bandwidth to Earth. 

      “Everything we do in CHAPEA is touched by the heroes working on the ground at NASA,” he said. “We couldn’t ask for a better experience or better people to work with.” 

      The experience evolved into a journey of personal growth for Jones. “I am constantly looking forward, planning for the future,” he said. “I learned to take time to enjoy the current season and be patient for the coming ones.” 
      He also discovered a new hobby: art. “I have even surprised myself with how well some of my sketches have turned out,” he said. 

      Anca Selariu: Microbiologist and Innovative Thinker 

      Anca Selariu brought expertise as a microbiologist in the U.S. Navy, with a background in viral vaccine discovery, prion transmission, gene therapy development, and infectious disease research management. 

      Selariu expressed that she owes much to the Navy, including her involvement in CHAPEA, as it helped shape her both personally and professionally. “I hope to bring back a fresh perspective, along with a strong inclination to think differently about a problem, and test which questions are worth asking before we set out answering them,” she said.  

      Reflecting on the mission, Selariu said, “Every day seemed to be a new revelation about something; about Earth, about art, about humans, about cultures, about the history of life in the universe – what little we know of it.” 
      She added, “As much as I appreciate having information at my fingertips, I will miss the luxury of being unplugged in a world that now validates humans by their digital presence.”  

      Ross Brockwell: Structural Engineer and Problem Solver 

      Brockwell, the mission’s flight engineer, focused on infrastructure, building design, and organizational leadership. His structural engineering background influenced his approach to problem solving in the CHAPEA habitat. 
      “An engineering perspective leads you to build an understanding of how things will react and interact, anticipate possible failure points, and ensure redundancy and contingency planning,” he said. 

      That mindset helped the crew develop creative solutions to mission challenges, such as using a 3D printer to design part adapters and tools and find ways to connect as a team. “Several things we wanted to do for fun required innovation, one being developing a bracket so we could safely and securely mount our mini-basketball hoop,” he said. 
      He advises Artemis Generation members interested in contributing to future analog missions to think about systems engineering theory and learn to develop and integrate whole systems while solving individual challenges.  

      Brockwell believes the most important attributes for a CHAPEA crew member are imagination and a strong sense of wonder. “Of course, one needs to have patience, self-control, emotional regulation, and a sense of humor,” he said. “I would also add perspective, which means understanding the importance of exploration missions on behalf of humankind and appreciating being part of something greater than oneself.” 
      The CHAPEA crew is “back on Earth” after their 378-day mission inside the simulated Martian habitat. NASA /Josh Valcarcel A Vision for the Future 
      As the first CHAPEA mission concludes, the data collected and experiences shared by the crew will pave the way for future explorations, bringing humanity one step closer to setting foot on Mars.  
      “One of the biggest things I have learned on this long-duration mission is that we should never underestimate the effects of small gains over time,” said Jones. “Be willing to do the hard things now and it may make all the difference for the future.” 
      Selariu emphasized the importance of interdisciplinary collaboration in upcoming space missions. “What everyone at CHAPEA seems to have in common is passion for space and drive to pursue it no matter the challenges, inconvenience, and personal sacrifices.” 
      Brockwell looks forward to missions to the Red Planet becoming a reality. “It still fills me with awe and excitement to think that one day there will be people on the surface of other worlds, overcoming immense challenges and expanding the existence and awareness of life from Earth.” 
      View the full article
    • By NASA
      Four dedicated explorers—Jason Lee, Stephanie Navarro, Shareef Al Romaithi, and Piyumi Wijesekara—just returned from a 45-day simulated journey to Mars, testing the boundaries of human endurance and teamwork within NASA’s HERA (Human Exploration Research Analog) habitat at Johnson Space Center in Houston. Their groundbreaking work on HERA’s Campaign 7 Mission 2 contributes to NASA’s efforts to study how future astronauts may react to isolation and confinement during deep-space journeys. 
      NASA’s HERA (Human Exploration Research Analog) Campaign 7 Mission 2 crew members outside the analog environment on June 24, 2024. From left: Piyumi Wijesekara, Shareef Al Romaithi, Jason Lee, and Stephanie Navarro. Credit: NASA/James Blair Credit: NASA/James Blair Throughout their mission, the crew conducted operational tasks and participated in 18 human health studies. These studies focused on behavioral health, team dynamics, and human-system interfaces, with seven being collaborative efforts with the Mohammed Bin Rashid Space Centre (MBRSC) of the United Arab Emirates (UAE) and the European Space Agency. These experiments assessed the crew’s physiological, behavioral, and psychological responses in conditions designed to be similar to a mission to Mars. 
      The HERA Campaign 7 Mission 2 crew experience a simulated landing on their return home. Credit: NASA/James Blair As their mission concluded, the HERA crew watched real footage from the Artemis I mission to simulate their landing. HERA operations lead Ted Babic rang the bell outside the habitat nine times to celebrate the crew’s egress—seven for the campaign and two for the mission—saying, “All in a safe passage to Mars and a safe return to Earth. May this vessel be a safe home to future HERA crews.” Babic then presented the crew with their mission patch, which they placed on the door of the HERA habitat. 
      The HERA Campaign 7 Mission 2 crew members place their mission patch on the habitat’s airlock door after egress. Credit: NASA/James Blair The crew expressed their gratitude to everyone involved in the mission, including NASA and MBRSC, the HERA mission control center, NASA’s Human Research Program (HRP) team, Analog Mission Control, medical teams, and their family and friends. Wijesekara shared, “This was one of the best experiences I’ve had in my life. I’d like to thank my crewmates for making this experience memorable and enjoyable.” 
      The HERA Campaign 7 Mission 2 crew members at NASA’s Johnson Space Center in Houston after their 45-day simulated mission to Mars. From left: Piyumi Wijesekara, Shareef Al Romaithi, Jason Lee, and Stephanie Navarro.Credit: NASA/James Blair Connecting With Students  

      On June 21, three days before crew egress, about 200 people gathered at Space Center Houston’s theater for a live Q&A session where students had the opportunity to share their questions with crew members Al Romaithi and Wijesekara. They discussed team dynamics, adapting to unexpected circumstances, and coping with isolation.  

      When asked about what prompted her to apply for the mission, Wijesekara emphasized the importance of helping NASA collect data that could help future long-duration space flights, saying, “This will be very useful when we get to the Moon with Artemis missions and even beyond that when we go to Mars.” 
      The HERA Campaign 7 Mission 2 crew members Piyumi Wijesekara and Shareef Al Romaithi join a groundlink Q&A with students at Space Center Houston on June 21, 2024. Credit: Space Center Houston/Jennifer Foulds  Inside HERA, mealtimes were bonding moments where the crew shared stories, laughed, and supported each other. When a student asked about building stronger teams, Wijesekara advised, “Spend time with your crewmates, get to know them deeply, and be a good listener.” 

      Al Romaithi, who hails from the UAE, shared that his academic background in aerospace engineering and aviation helped him stand out in the application process. In addition, this HERA campaign is focused on cultural diversity, which opened the opportunity for him to apply through a partnership between HERA and MBRSC. 

      Discussing the mental effects of isolation, Al Romaithi highlighted the comfort provided by personal items, books, and board games. Wijesekara noted that the white noise of instruments running became their constant companion that her senses adjusted to over time. 

      Wijesekara told the audience her favorite experience was performing spacewalks and “flying drones on Mars,” via virtual reality, which allowed them to observe Martian landscapes and even lava caves. Through the habitat’s window screens, they could see simulated views of space and Martian landscapes.  

      The crew addressed the challenges they faced inside the analog environment, such as communication delays, which taught them teamwork, patience, and precise planning. They utilized a 3D printer aboard HERA to address equipment issues. A curious student asked what happens to the crew and the mission in case of an outside emergency, like a hurricane. Both crew members explained that HERA provided them with step-by-step emergency instructions. 

      Medical evaluations and nutrition-specific meal plans were crucial for the mission, Al Romaithi and Wijesekara noted, with daily monitoring of the crew’s physical and mental health. The crew also grew lettuce hydroponically and had four pet triops shrimp named Buzz, Alvin, Simon, and Theodore. 

      When a student asked what food he missed most, Al Romaithi replied, “Home-cooked meals.”  

      Wijesekara shared the first thing she plans to do post-mission is see her family and visit a list of restaurants with her crewmates. She also looks forward to running on the beach. 

      Reflecting on their experience, Al Romaithi noted, “We’ve become more disciplined and efficient in our daily activities.”  

      What was the most valuable lesson learned? “The importance of teamwork and communication,” he said.  

      Both crewmembers also gave students in the audience some advice. “Never hesitate or be shy to ask for help,” Al Romaithi said. “Always push for your biggest dreams, don’t let self-doubt slow you down, and believe in yourself.” 

      “And keep studying!” added Wijesekara. 
      Students ask HERA crew members questions at the Space Center Houston theater. Credit: Space Center Houston/Jennifer Foulds Credit: Space Center Houston/Jennifer Foulds Students ask HERA crew members questions at the Space Center Houston theater. Credit: Space Center Houston/Jennifer Foulds View the full article
  • Check out these Videos

×
×
  • Create New...