Jump to content

Minerva Mission highlights


Recommended Posts

Minerva_Mission_Highlights_card_full.png Video: 00:05:03

ESA astronaut Samantha Cristoforetti will soon complete her second mission to the International Space Station, Minerva.

She was launched from Kennedy Space Center in late April, and since then has supported numerous European and international science experiments, as well as taken responsibility for all operations within the US Orbital Segment. In July 2022 she performed her first spacewalk, during which she carried out work in the Russian segment to bring the European Robotic Arm into operation. At the end of September 2022, she became the first European woman to hold the role of crew commander on the Station.

This report provides a summary of the Minerva Mission, which will end shortly with Samantha’s return to Earth.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Boeing’s Starliner spacecraft that launched NASA’s Crew Flight Test astronauts Butch Wilmore and Suni Williams to the International Space Station is pictured docked to the Harmony module’s forward port. This long-duration photograph was taken at night from the orbital complex as it soared 258 miles above western China. NASA and Boeing will host a news conference with mission leadership at 11:30 a.m. EDT Thursday, July 25, to provide the latest status of the agency’s Boeing Crew Flight Test aboard the International Space Station. NASA previously planned an audio-only media teleconference to host the discussion.
      The agency will provide live coverage on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA content through a variety of platforms, including social media.
      Participants include:
      Steve Stich, manager, NASA’s Commercial Crew Program Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing United States-based media seeking to attend in person must contact the newsroom at NASA’s Johnson Space Center in Houston no later than 9:30 a.m. EDT Thursday, July 25, at 281-483-5111 or jsccommu@mail.nasa.gov. U.S. and international media interested in participating by phone must contact NASA Johnson or NASA’s Kennedy Space Center in Florida at ksc-newsroom@mail.nasa.gov by 10:30 a.m. the day of the event. A copy of NASA’s media accreditation policy is online.
      Engineering teams with NASA and Boeing recently completed ground hot fire testing of a Starliner reaction control system thruster at White Sands Test Facility in New Mexico. The test series involved firing the engine through similar in-flight conditions the spacecraft experienced during its approach to the space station, as well as various stress-case firings for what is expected during Starliner’s undocking and the deorbit burn that will position the spacecraft for a landing in the southwestern United States. Teams are analyzing the data from these tests, and leadership plans to discuss initial findings during the briefing.
      NASA astronauts Butch Wilmore and Suni Williams arrived at the orbiting laboratory on June 6, after lifting off aboard a United Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida on June 5. Since their arrival, the duo has been integrated with the Expedition 71 crew, performing scientific research and maintenance activities as needed.
      As part of NASA’s Commercial Crew Program, the mission is an end-to-end test of the Starliner system. Following a successful return to Earth, NASA will begin the process of certifying Starliner for rotational missions to the International Space Station. Through partnership with American private industry, NASA is opening access to low Earth orbit and the space station to more people, science, and commercial opportunities.
      For NASA’s blog and more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Leah Cheshier / Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov / sandra.p.jones@nasa.gov
      View the full article
    • By NASA
      ICON, shown in this artist’s concept, studied the frontiers of space, the dynamic zone high in our atmosphere where terrestrial weather from below meets space weather above. NASA/Goddard/Conceptual Image Lab NASA’s ICON mission studied the outermost layer of Earth’s atmosphere called the ionosphere. ICON provided critical insights into interplay between space weather and Earth’s weather. The mission gathered unprecedented detail of airglow, showed a relationship between the atmosphere’s ions and Earth’s magnetic field lines, and provided the first concrete observation to confirm Earth’s long-theorized ionospheric dynamo. Nearly a year after ICON accomplished its primary mission, communication was lost in November 2022 for unclear reasons. NASA formally concluded the mission after several months of troubleshooting could not regain contact. After contributing to many important findings on the boundary between Earth’s atmosphere and space, the Ionospheric Connection Explorer (ICON) mission has come to an end. ICON launched in October 2019 and after completing its two-year mission objectives in December 2021, it operated as an extended mission for another year.
      “The ICON mission has truly lived up to its name,” said Joseph Westlake, heliophysics division director at NASA Headquarters in Washington. “ICON not only successfully completed and exceeded its primary mission objectives, it also provided critical insights into the ionosphere and the interplay between space and terrestrial weather.”
      The ICON spacecraft studied a part of our planet’s outermost layer of the atmosphere, called the ionosphere. From there, ICON investigated what events impact the ionosphere, including Earth’s weather from below and space weather from above.
      The ionosphere is the lowest boundary of space, located between 55 miles to 360 miles above Earth’s surface. It is made up of a sea of particles that have been ionized, a mix of positively charged ions and negatively charged electrons called plasma. This frontier of space is a dynamic and busy region, home to many satellites — including the International Space Station — and is a conduit for radio communications and GPS signals.

      Video explaining the features of the ionosphere, Earth’s outmost layer of the atmosphere. It is home to the aurora, the International Space Station, a variety of satellites, and radio communication waves.
      NASA/Goddard/Conceptual Image Lab/Krystofer Kim Both satellites and signals can be disrupted by the complex interactions of terrestrial and space weather. Studying and understanding the ionosphere is crucial to understanding space weather and its effects on our technology.
      The ICON mission captured unprecedented data about the ionosphere with direct measurements of the charged gas in its immediate surroundings alongside images of one of the ionosphere’s most stunning features — airglow.
      ICON tracked the colorful bands as they moved through the ionosphere. Airglow is created by a process similar to what creates the aurora. However, airglow occurs around the world, not just the northern and southern latitudes where auroras are typically found. Although airglow is normally dim, ICON’s instruments were specially designed to capture even the faintest glow to build a picture of the ionosphere’s density, composition, and structure.
      The lowest reaches of space glow with bright bands of color called airglow. NASA Through the principle of Doppler shift, ICON’s sensitive imagers also detected the motion of the atmosphere as it glowed. “It’s like measuring a train’s speed by detecting the change in the pitch of its horn — but with light,” said Thomas J. Immel, ICON mission lead at the University of California, Berkeley. The mission was specifically designed to perform this technically difficult measurement.

      A New Ionospheric Perspective
      The ICON mission’s comprehensive view of the upper atmosphere provided valuable data for scientists to unravel for years to come. For instance, its measurements showed how the 2022 Hunga Tonga-Hunga Ha’apai volcanic eruption disrupted electrical currents in the ionosphere.
      “ICON was able to capture the speed of the volcanic eruption, allowing us to directly see how it affected the motion of charged particles in the ionosphere,” Immel said. “This was a clear example of the connection between tropical weather and ionospheric structure. ICON showed us how things that happen in terrestrial weather have a direct correlation with events in space.”
      Another scientific breakthrough was ICON’s measurements of the motion of ions in the atmosphere and their relationship with Earth’s magnetic field lines. “It was truly unique,” Immel remarked. “ICON’s measurements of the motion of ions in the atmosphere was scientifically transformational in our understanding of behavior in the ionosphere.”
      Visualization of ICON orbiting Earth and taking measurements of the wind speed (green arrows) and ion fluctuation and direction (red lines) at the geomagnetic field lines (purple lines). When the wind changes direction, the ion fluctuation changes to flow downward.NASA’s Scientific Visualization Studio/William T. Bridgman With ICON’s help, scientists better understand how these interactions drive a process called the ionospheric dynamo. The dynamo, which lies at the bottom of the ionosphere, remained a mystery for decades because it is difficult to observe.
      ICON provided the first concrete observation of winds fueling the dynamo and how this influences space weather. Unpredictable terrestrial winds move plasma around the ionosphere, sending the charged particles shooting out into space or plummeting toward Earth. This electrically charged tug-of-war between the ionosphere and Earth’s electromagnetic fields acts as a generator, creating complex electric and magnetic fields that can affect both technology and the ionosphere itself.
      “No one had ever seen this before,” Immel said. “ICON finally and conclusively provided experimental confirmation of the wind dynamo theory.”

      An Iconic Legacy
      On Nov. 25, 2022, the ICON team lost contact with the spacecraft. Communication with the spacecraft could not be established, even after performing a power cycle reset using a built-in command loss timer. Though the spacecraft remains intact, other troubleshooting techniques were unable to re-establish contact between the ICON spacecraft and mission operators.
      “ICON’s legacy will live on through the breakthrough knowledge it provided while it was active and the vast dataset from its observations that will continue to yield new science,” Westlake said. “ICON serves as a foundation for new missions to come.”
      By Desiree Apodaca
      NASA’s Goddard Space Flight Center, Greenbelt, Md.

      Media Contact: Sarah Frazier
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Jul 24, 2024 Related Terms
      Earth’s Atmosphere Earth’s Magnetic Field Goddard Space Flight Center Heliophysics Heliophysics Division ICON (Ionospheric Connection Explorer) Ionosphere Missions Science Mission Directorate Space Weather The Sun Keep Exploring Discover More Topics From NASA
      Missions
      Sun
      Helio Big Year
      Earth
      Your home. Our Mission. And the one planet that NASA studies more than any other.
      View the full article
    • By NASA
      Boeing’s Starliner spacecraft that launched NASA’s Crew Flight Test astronauts Butch Wilmore and Suni Williams to the International Space Station is pictured docked to the Harmony module’s forward port. This long-duration photograph was taken at night from the orbital complex as it soared 258 miles above western China. Leadership from NASA and Boeing will participate in a media teleconference at 11:30 a.m. EDT Thursday, July 25, to provide the latest status of the agency’s Boeing Crew Flight Test mission aboard the International Space Station.
      Audio of the media teleconference will stream live on the agency’s website:
      https://www.nasa.gov/nasatv
      Participants include:
      Steve Stich, manager, NASA’s Commercial Crew Program Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing Media interested in participating must contact the newsroom at NASA’s Kennedy Space Center in Florida no later than one hour prior to the start of the call at ksc-newsroom@mail.nasa.gov. A copy of NASA’s media accreditation policy is online.
      Engineering teams with NASA and Boeing recently completed ground hot fire testing of a Starliner reaction control system thruster at White Sands Test Facility in New Mexico. The test series involved firing the engine through similar in-flight conditions the spacecraft experienced during its approach to the space station, as well as various stress-case firings for what is expected during Starliner’s undocking and the deorbit burn that will position the spacecraft for a landing in the southwestern United States. Teams are analyzing the data from these tests, and leadership plans to discuss initial findings during the call.
      NASA astronauts Butch Wilmore and Suni Williams arrived at the orbiting laboratory on June 6, after lifting off aboard a United Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida on June 5. Since their arrival, the duo has been integrated with the Expedition 71 crew, performing scientific research and maintenance activities as needed.
      As part of NASA’s Commercial Crew Program, the mission is an end-to-end test of the Starliner system. Following a successful return to Earth, NASA will begin the process of certifying Starliner for rotational missions to the International Space Station. Through partnership with American private industry, NASA is opening access to low Earth orbit and the space station to more people, science, and commercial opportunities.
      For NASA’s blog and more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Leah Cheshier / Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov / sandra.p.jones@nasa.gov
      View the full article
    • By NASA
      5 Min Read 25 Years On, Chandra Highlights Legacy of NASA Engineering Ingenuity
      By Rick Smith
      “The art of aerospace engineering is a matter of seeing around corners,” said NASA thermal analyst Jodi Turk. In the case of NASA’s Chandra X-ray Observatory, marking its 25th anniversary in space this year, some of those corners proved to be as far as 80,000 miles away and a quarter-century in the future.
      Turk is part of a dedicated team of engineers, designers, test technicians, and analysts at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Together with partners outside and across the agency, including the Chandra Operations Control Center in Burlington, Massachusetts, they keep the spacecraft flying, enabling Chandra’s ongoing studies of black holes, supernovae, dark matter, and more – and deepening our understanding of the origin and evolution of the cosmos.
      Engineers in the X-ray Calibration Facility – now the world-class X-ray & Cryogenic Facility – at NASA’s Marshall Space Flight Center in Huntsville, Alabama, integrate the Chandra X-ray Observatory’s High Resolution Camera with the mirror assembly inside a 24-foot-diameter vacuum chamber, in this photo taken March 16, 1997. Chandra was launched July 23, 1999, aboard space shuttle Columbia.NASA “Everything Chandra has shown us over the last 25 years – the formation of galaxies and super star clusters, the behavior and evolution of supermassive black holes, proof of dark matter and gravitational wave events, the viability of habitable exoplanets – has been fascinating,” said retired NASA astrophysicist Martin Weisskopf, who led Chandra scientific development at Marshall beginning in the late 1970s. “Chandra has opened new windows in astrophysics that we’d hardly begun to imagine in the years prior to launch.”
      Following extensive development and testing by a contract team managed and led by Marshall, Chandra was lifted to space aboard the space shuttle Columbia on July 23, 1999. Marshall has continued to manage the program for NASA ever since.
      “How much technology from 1999 is still in use today?” said Chandra researcher Douglas Swartz. “We don’t use the same camera equipment, computers, or phones from that era. But one technological success – Chandra – is still going strong, and still so powerful that it can read a stop sign from 12 miles away.”
      That lasting value is no accident. During early concept development, Chandra – known prior to launch as the Advanced X-ray Astrophysics Facility – was intended to be a 15-year, serviceable mission like that of NASA’s Hubble Space Telescope, enabling periodic upgrades by visiting astronauts.
      But in the early 1990s, as NASA laid plans to build the International Space Station in orbit, the new X-ray observatory’s budget was revised. A new, elliptical orbit would carry Chandra a third of the way to the Moon, or roughly 80,000 miles from Earth at apogee. That meant a shorter mission life – five years – and no periodic servicing.
      The Chandra X-Ray Observatory, the longest cargo ever carried to space aboard the space shuttle, seen in Columbia’s payload bay prior to being tilted upward for release and deployment on July 23, 1999.NASA The engineering design team at Marshall, its contractors, and the mission support team at the Smithsonian Astrophysical Observatory revised their plan, minimizing the impact to Chandra’s science. In doing so, they enabled a long-running science mission so successful that it would capture the imagination of the nation and lead NASA to extend its duration past that initial five-year period.
      “There was a lot of excitement and a lot of challenges – but we met them and conquered them,” said Marshall project engineer David Hood, who joined the Chandra development effort in 1988.
      “The field of high-powered X-ray astronomy was still so relatively young, it wasn’t just a matter of building a revolutionary observatory,” Weisskopf said. “First, we had to build the tools necessary to test, analyze, and refine the hardware.”
      Marshall renovated and expanded its X-ray Calibration Facility – now known as the X-ray & Cryogenic Facility – to calibrate Chandra’s instruments and conduct space-like environment testing of sensitive hardware. That work would, years later, pave the way for Marshall testing of advanced mirror optics for NASA’s James Webb Space Telescope.
      On July 23, 1999, the Chandra X-Ray Observatory is released from space shuttle Columbia’s payload bay. Twenty-five years later, Chandra continues to make valuable discoveries about high-energy sources and phenomena across the universe.NASA “Marshall has a proven history of designing for long-term excellence and extending our lifespan margins,” Turk said. “Our missions often tend to last well past their end date.”
      Chandra is a case in point. The team has automated some of Chandra’s operations for efficiency. They also closely monitor key elements of the spacecraft, such as its thermal protection system, which have degraded as anticipated over time, due to the punishing effects of the space environment.
      “Chandra’s still a workhorse, but one that needs gentler handling,” Turk said. The team met that challenge by meticulously modeling and tracking Chandra’s position and behavior in orbit and paying close attention to radiation, changes in momentum, and other obstacles. They have also employed creative approaches, making use of data from sensors on the spacecraft in new ways.
      Acting project manager Andrew Schnell, who leads the Chandra team at Marshall, said the mission’s length means the spacecraft is now overseen by numerous “third-generation engineers” such as Turk. He said they’re just as dedicated and driven as their senior counterparts, who helped deliver Chandra to launch 25 years ago.
      An artist’s illustration depicting NASA’s Chandra X-ray Observatory in flight, with a vivid star field behind it. Chandra’s solar panels are deployed and its camera “eye” open on the cosmos.NASA The work also provides a one-of-a-kind teaching opportunity, Turk said. “Troubleshooting Chandra has taught us how to find alternate solutions for everything from an interrupted sensor reading to aging thermocouples, helping us more accurately diagnose issues with other flight hardware and informing design and planning for future missions,” she said.
      Well-informed, practically trained engineers and scientists are foundational to productive teams, Hood said – a fact so crucial to Chandra’s success that its project leads and support engineers documented the experience in a paper titled, “Lessons We Learned Designing and Building the Chandra Telescope.”
      “Former program manager Fred Wojtalik said it best: ‘Teams win,’” Hood said. “The most important person on any team is the person doing their work to the best of their ability, with enthusiasm and pride. That’s why I’m confident Chandra’s still got some good years ahead of her. Because that foundation has never changed.”
      As Chandra turns the corner on its silver anniversary, the team on the ground is ready for whatever fresh challenge comes next.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://cxc.harvard.edu
      Media Contact:
      Jonathan Deal / Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      jonathan.e.deal@nasa.gov / lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      Science Launching on Northrop Grumman's 21st Cargo Resupply Mission to the Space Station
  • Check out these Videos

×
×
  • Create New...