Jump to content

NASA’s SpaceX Crew-5 Launches to International Space Station


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Olympics on the International Space Station
    • By European Space Agency
      Image: This striking high-resolution image offers an in-depth view of central Paris, allowing you to explore and zoom into the city’s most captivating areas in exceptional detail. View the full article
    • By NASA
      Sierra Space’s LIFE habitat following a full-scale ultimate burst pressure test at NASA’s Marshall Space Flight Center in Huntsville, AlabamaSierra Space An element of a NASA-funded commercial space station, Orbital Reef, under development by Blue Origin and Sierra Space, recently completed a full-scale ultimate burst pressure test as part of the agency’s efforts for new destinations in low Earth orbit.
      NASA, Sierra Space, and ILC Dover teams conducting a full-scale ultimate burst pressure test on Sierra Space’s LIFE habitat structure using testing capabilities at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Video Credits: Sierra Space This milestone is part of a NASA Space Act Agreement awarded to Blue Origin in 2021. Orbital Reef includes elements provided by Sierra Space, including the LIFE (Large Integrated Flexible Environment) habitat structure.
      A close-up view of Sierra Space’s LIFE habitat, which is fabricated from high-strength webbings and fabric, after the pressurization to failure experienced during a burst test.Sierra Space Teams conducted the burst test on Sierra Space’s LIFE habitat structure using testing capabilities at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The inflatable habitat is fabricated from high-strength webbings and fabric that form a solid structure once pressurized. The multiple layers of soft goods materials that make up the shell are compactly stowed in a payload fairing and inflated when ready for use, enabling the habitat to launch on a single rocket.
      A close-up view of a detached blanking plate from the Sierra Space’s LIFE habitat structure following its full-scale ultimate burst pressure test at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The plate is used to test the concept of a habitat window.Sierra Space “This is an exciting test by Sierra Space for Orbital Reef, showing industry’s commitment and capability to develop innovative technologies and solutions for future commercial destinations,” said Angela Hart, manager of NASA’s Commercial Low Earth Orbit Development Program at the agency’s Johnson Space Center in Houston. “Every successful development milestone by our partners is one more step to achieving our goal of enabling commercial low Earth orbit destinations and expanding the low Earth orbit marketplace.”
      Dr. Tom Marshburn, Sierra Space chief medical officer, speaks with members of the Sierra Space team following the burst test.Sierra Space The pressurization to failure during the test demonstrated the habitat’s capabilities and provided the companies with critical data supporting NASA’s inflatable softgoods certification guidelines, which recommend a progression of tests to evaluate these materials in relevant operational environments and understand the failure modes.
      Sierra Space’s LIFE habitat following a full-scale ultimate burst pressure test at NASA’s Marshall Space Flight Center in Huntsville, Alabama.Sierra Space Demonstrating the habitat’s ability to meet the recommended factor of safety through full-scale ultimate burst pressure testing is one of the primary structural requirements on a soft goods article, such as Sierra Space’s LIFE habitat, seeking flight certification.

      Prior to this recent test, Sierra Space conducted its first full-scale ultimate burst pressure test on the LIFE habitat at Marshall in December 2023. Additionally, Sierra Space previously completed subscale tests, first at NASA’s Johnson Space Center in Houston and then at Marshall as part of ongoing development and testing of inflatable habitation architecture.
      Sierra Space’s LIFE habitat on the test stand at NASA’s Marshall Space Flight Center ahead of a burst test. The LIFE habitat will be part of Blue Origin’s commercial destination, Orbital Reef.Sierra Space NASA supports the design and development of multiple commercial space stations, including Orbital Reef, through funded and unfunded agreements. The current design and development phase will be followed by the procurement of services from one or more companies.

      NASA’s goal is to achieve a strong economy in low Earth orbit where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.

      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/humans-in-space/commercial-space
      Keep Exploring Discover More Topics From NASA
      Commercial Destinations in Low Earth Orbit
      Low Earth Orbit Economy Latest News
      Humans In Space
      Marshall Space Flight Center
      View the full article
    • By NASA
      This artist’s concept shows how the universe might have looked when it was less than a billion years old, about 7 percent of its current age. Star formation voraciously consumed primordial hydrogen, churning out myriad stars at an unprecedented rate. NASA’s Nancy Grace Roman Space Telescope will peer back to the universe’s early stages to understand how it transitioned from being opaque to the brilliant starscape we see today.NASA, ESA, and A. Schaller (for STScI) 0:00 / 0:00
      Your browser does not support the audio element. Today, enormous stretches of space are crystal clear, but that wasn’t always the case. During its infancy, the universe was filled with a “fog” that made it opaque, cloaking the first stars and galaxies. NASA’s upcoming Nancy Grace Roman Space Telescope will probe the universe’s subsequent transition to the brilliant starscape we see today –– an era known as cosmic dawn.
      “Something very fundamental about the nature of the universe changed during this time,” said Michelle Thaller, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Thanks to Roman’s large, sharp infrared view, we may finally figure out what happened during a critical cosmic turning point.”
      Lights Out, Lights On
      Shortly after its birth, the cosmos was a blistering sea of particles and radiation. As the universe expanded and cooled, positively charged protons were able to capture negatively charged electrons to form neutral atoms (mostly hydrogen, plus some helium). That was great news for the stars and galaxies the atoms would ultimately become, but bad news for light!
      It likely took a long time for the gaseous hydrogen and helium to coalesce into stars, which then gravitated together to form the first galaxies. But even when stars began to shine, their light couldn’t travel very far before striking and being absorbed by neutral atoms. This period, known as the cosmic dark ages, lasted from around 380,000 to 200 million years after the big bang.
      Then the fog slowly lifted as more and more neutral atoms broke apart over the next several hundred million years: a period called the cosmic dawn.
      “We’re very curious about how the process happened,” said Aaron Yung, a Giacconi Fellow at the Space Telescope Science Institute in Baltimore, who is helping plan Roman’s early universe observations. “Roman’s large, crisp view of deep space will help us weigh different explanations.”
      0:00 / 0:00
      Your browser does not support the audio element. Prime Suspects
      It could be that early galaxies may be largely to blame for the energetic light that broke up the neutral atoms. The first black holes may have played a role, too. Roman will look far and wide to examine both possible culprits.
      “Roman will excel at finding the building blocks of cosmic structures like galaxy clusters that later form,” said Takahiro Morishita, an assistant scientist at Caltech/IPAC in Pasadena, California, who has studied cosmic dawn. “It will quickly identify the densest regions, where more ‘fog’ is being cleared, making Roman a key mission to probe early galaxy evolution and the cosmic dawn.”
      The earliest stars were likely starkly different from modern ones. When gravity began pulling material together, the universe was very dense. Stars probably grew hundreds or thousands of times more massive than the Sun and emitted lots of high-energy radiation. Gravity huddled up the young stars to form galaxies, and their cumulative blasting may have once again stripped electrons from protons in bubbles of space around them.
      “You could call it the party at the beginning of the universe,” Thaller said. “We’ve never seen the birth of the very first stars and galaxies, but it must have been spectacular!”
      But these heavyweight stars were short-lived. Scientists think they quickly collapsed, leaving behind black holes –– objects with such extreme gravity that not even light can escape their clutches. Since the young universe was also smaller because it hadn’t been expanding very long, hordes of those black holes could have merged to form even bigger ones –– up to millions or even billions of times the Sun’s mass.
      Supermassive black holes may have helped clear the hydrogen fog that permeated the early universe. Hot material swirling around black holes at the bright centers of active galaxies, called quasars, prior to falling in can generate extreme temperatures and send off huge, bright jets of intense radiation. The jets can extend for hundreds of thousands of light-years, ripping the electrons from any atom in their path.
      NASA’s James Webb Space Telescope is also exploring cosmic dawn, using its narrower but deeper view to study the early universe. By coupling Webb’s observations with Roman’s, scientists will generate a much more complete picture of this era.
      So far, Webb is finding more quasars than anticipated given their expected rarity and Webb’s small field of view. Roman’s zoomed-out view will help astronomers understand what’s going on by seeing how common quasars truly are, likely finding tens of thousands compared to the handful Webb may find.
      This view from the James Webb Space Telescope contains more than 20,000 galaxies. Researchers analyzed 117 galaxies that all existed approximately 900 million years after the big bang. They focused on 59 galaxies that lie in front of quasar J0100+2802, an active supermassive black hole that acts like a beacon, located at the center of the image above appearing tiny and pink with six prominent diffraction spikes. The team studied both the galaxies themselves and the illuminated gas surrounding them, which was lit up by the quasar’s bright light. The observation sheds light on how early galaxies cleared the “fog” around them, eventually leading to today’s clear and expansive views.NASA, ESA, CSA, Simon Lilly (ETH Zürich), Daichi Kashino (Nagoya University), Jorryt Matthee (ETH Zürich), Christina Eilers (MIT), Rob Simcoe (MIT), Rongmon Bordoloi (NCSU), Ruari Mackenzie (ETH Zürich); Image Processing: Alyssa Pagan (STScI), Ruari Macken “With a stronger statistical sample, astronomers will be able to test a wide range of theories inspired by Webb observations,” Yung said.
      Peering back into the universe’s first few hundred million years with Roman’s wide-eyed view will also help scientists determine whether a certain type of galaxy (such as more massive ones) played a larger role in clearing the fog.
      “It could be that young galaxies kicked off the process, and then quasars finished the job,” Yung said. Seeing the size of the bubbles carved out of the fog will give scientists a major clue. “Galaxies would create huge clusters of bubbles around them, while quasars would create large, spherical ones. We need a big field of view like Roman’s to measure their extent, since in either case they’re likely up to millions of light-years wide –– often larger than Webb’s field of view.”
      Roman will work hand-in-hand with Webb to offer clues about how galaxies formed from the primordial gas that once filled the universe, and how their central supermassive black holes influenced galaxy and star formation. The observations will help uncover the cosmic daybreakers that illuminated our universe and ultimately made life on Earth possible.
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      Download high-resolution video and images from NASA’s Scientific Visualization Studio
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media contact:
      Claire Andreoli
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-1940
      Explore More
      5 min read How NASA’s Roman Space Telescope Will Rewind the Universe
      Article 1 year ago 6 min read How NASA’s Roman Space Telescope Will Chronicle the Active Cosmos
      Article 8 months ago 5 min read How NASA’s Roman Mission Will Hunt for Primordial Black Holes
      Article 3 months ago Share
      Details
      Last Updated Jul 25, 2024 ContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Active Galaxies Astrophysics Black Holes Galaxies Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Goddard Space Flight Center James Webb Space Telescope (JWST) Origin & Evolution of the Universe Science & Research Stars Supermassive Black Holes The Big Bang The Universe View the full article
    • By NASA
      11 Min Read Former Space Communications, Navigation Interns Pioneer NASA’s Future
      Interns from the SCaN Internship Project visiting NASA's Wallops Flight Facility in Wallops Island, Virginia. Credits: NASA For over a decade, NASA’s SCaN (Space Communications and Navigation) Internship Project alumni have played important roles in extending the agency’s long-term vision for exploration. For National Intern Day on Thursday, July 25, previous program interns reflect on their journeys to and through NASA and offer advice for current and future interns. 
      Every summer interns join NASA’s SIP (SCaN Internship Project) program to advance the capabilities of the agency’s Deep and Near Space Networks that enable missions to communicate and navigate. 
      The SIP intern program develops the future workforce that will imagine, maintain, and operate the next generation of communications and navigation systems. In addition to interns’ main projects, which can range from network engineering and orbital mathematics to mission awareness campaigns and graphic design, SIP interns participate in programming that enhances their professional development and networking skills. 
      Justin Long
      Justin Long was a SIP intern in 2017 while earning his degree in electrical engineering.
      Before he applied for an internship, Long was set on working in space communications at NASA and looked out for opportunities to deepen his aerospace experience. Long attributes his work at the University of Alaska Fairbanks’ CubeSat lab for his acceptance into the intern program, as well as his university’s unique partnership with NASA.
      “On my morning walks, I would pass by several of the Near Space Network ground stations operated by the Alaska Satellite Facility at the University of Alaska Fairbanks,” Long said. “At the time I was working on a ground station for our CubeSat program, so I went to intern.nasa.gov and searched anything space communications-related.”
      Long was selected for a project at NASA’s Wallops Flight Facility in Virginia focused on ground station improvements to the agency’s Near Space Network. In addition to looking at hardware upgrades for NASA-owned ground stations, Long also explored opportunities to expand the network by integrating commercial and university assets.
      Justin Long, 2017 SCaN Internship Project (SIP) Intern Courtesy of Justin Long Now, Long works as a telecommunications engineer at NASA Goddard, designing antennas and communication systems for spacecraft. His experience with ground stations at NASA Wallops influences his work on spacecraft today.
      “Working on communications systems means figuring out what the end-to-end system for a spacecraft looks like, from the radio to the antenna,” Long said. “The internship prepared me to answer questions about how we’re transmitting the data, how fast we can transmit it, and how much data we can receive in one day.”
      The major difference between his current role and his intern project is that the hardware he is developing will fly on a spacecraft rather than remain on Earth as part of a ground station antenna. Long will also test his hardware to ensure it functions as expected in orbit. The reward for this rigorous testing is the knowledge that the communications hardware he designed is a critical part of ensuring the spacecraft’s successful operation.
      “There is nothing more exciting than working hands-on with a spacecraft,” Long said. “Getting to see the hardware integrated onto the spacecraft — watching the whole thing come together — is my favorite part of the job.”
      While Long’s internship allowed him to come into his current position with a broader knowledge base than other engineers at his level of experience, he stresses that the networking opportunities he had with SIP were more important than the intern project itself.
      “Even if you have an internship that’s not directly in your field of expertise, the opportunity to network with NASA professionals and meet different groups can have impact on your career,” Long said. “I’m still in contact with people I met as an intern.”
      Thomas Montano
      Thomas Montano was completing his bachelor’s degree in electrical engineering during his SIP internships in 2019 and 2020. In his current role as an electrical engineer in NASA’s Search and Rescue office at Goddard, Montano supports human spaceflight recovery efforts as well as the development of a lunar search and rescue system.
      Thomas Montano during Artemis II Underway Recovery Test 10.NASA Montano was initially interested in digital signal processing and communication systems, so he decided to apply for a SCaN internship.
      “It wasn’t really a contest between NASA and other internship programs,” Montano said. “I got to work on cool projects. I got to work with cool people. Goddard is just a place that makes you want to do better and learn things.”
      Montano’s first internship was rewriting a software tool for running link budgets, a log of signal gains and losses in a radio communications system. In his second internship, Montano developed a virtual model of the physical transmission environment for lunar communications systems that could combine with the link budget tool to create an end-to-end communication channel simulation.
      Both tools continue to be used at the agency today, though Montano’s current position has shifted his focus to the special realities of human spaceflight. Now, Montano is helping NASA test location beacons for the Artemis II astronauts. He describes meeting the Artemis crew while practicing capsule recovery on a U.S. Navy ship as an exciting and sobering reminder of the importance of his work.
      “Nothing can top putting boots on the ground,” Montano said. “Meeting the crew made the work all the more real. My work isn’t hypothetical or theoretical. These are real people going to the Moon. My system cannot fail. The search and rescue system cannot go down. Failure really is not an option.”
      Nothing can top putting boots on the ground. Meeting the Artemis crew mad the work all the more real.
      THomas Montano
      Electrical Engineer at NASA's Goddard Space Flight Center
      Montano advises new interns to explore the center, ask questions, and learn how the agency works. He encourages anyone considering an internship to apply. 
      “The biggest reason that people don’t get NASA internships is because they don’t apply,” he said. “They count themselves out, and that’s nonsense. If you have good qualifications, go submit your résumé.”
      Katrina Lee
      Before becoming the engagement coordinator for NASA’s Commercialization, Innovation, and Synergies (CIS) office at Goddard, Katrina Lee was a communications intern with SIP.
      For her project, Lee wrote promotional materials highlighting NASA’s then-upcoming LCRD (Laser Communications Relay Demonstration), which launched Dec. 7, 2021. The role required her to research the science behind laser communications and understand the role the technology is playing in advancing communications at NASA. The following summer, Lee applied her experience to writing and producing promotional materials for Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T) — LCRD’s first in-space user.
      When Lee first joined the program in 2021, she was planning to work in national security. Her internship experience shifted her attention to pursuing a degree in marketing and business. She also joined her student newspaper as a contributing writer.
      “The project I was covering resonated with me. I learned that I was really interested in writing and communications,” said Lee. “I homed in on my interest in public-facing opportunities to share very technical information in a digestible way.”
      Katrina Lee, SCaN Internship Project (SIP) Intern Summer 2021 and 2022.Courtesy of Katrina Lee In her current role, Lee applies the skills she developed as an intern to promote the Near Space Network’s commercialization opportunities. In addition to writing promotional and informational material, Lee manages event logistics, plans and guides center tours for the public and potential partners, attends conferences, and generates ideas for promoting the CIS office.
      Lee’s work gives her special insight into the continuing development of the Near Space Network.
      “I get to see the future of space exploration in real time,” Lee said. “There’s a greater emphasis on collaboration than we’ve seen in the past, and that collaboration is going to help space communications capabilities go further than ever before.”
      When Lee reflects on what aspects of her internship were most important, she returns to the value of her work and her mentor-mentee relationship.
      “I felt challenged here,” Lee said. “It was an opportunity to build confidence and learn from your mistakes beside someone who wants you to succeed. It really helped me grow as a professional.”
      Lee advises new interns and students considering an internship to remember that mistakes are a valuable part of the experience. “No one at NASA expects you to know everything right away,” Lee said. “They recognize that you’re an intern and you are here to learn. This is a place where you can learn something new every day.”
      Unsh Rawal
      Unsh Rawal joined SIP in 2022 as a rising high school senior. He came to the program with a passion for robotics and a desire to expand his interests and try new things.
      Rawal’s project contributed to the development of an interface that allows students to control robots over local and remote wireless connections. The interface is part of an educational activity for Amateur Radio on the International Space Station (ARISS) exploring telerobotics, or the distant remote control of a robot.
      Unsh Rawal, SCaN Internship Project (SIP) Intern Summer 2022.Courtesy of Unsh Rawal Rawal continued to develop his project with ARISS beyond his internship. He spent the past winter porting the activity’s code to a Raspberry Pi, a palm-sized minicomputer, while broadening its functionality. His work is key to ARISS’s efforts to distribute accessible, interactive educational tools.
      Rawal hopes to return to the intern program to continue his NASA project alongside his educational pursuits. While Rawal came to the intern program planning to pursue a degree in robotics, his project ignited his passion for a new field. “I learned a lot about networking, gained UI and API experience, learned about sockets,” he said. “I learned I really enjoy computer science.”
      When asked to share his advice with interns new to the program, Rawal recommends scheduling regular meetings with your project mentor.
      “Having consistent meetings with the people supervising the project helps you stay on track and better understand the project requirements,” Rawal said. “They’re an opportunity to learn new things from someone willing to give you one-on-one guidance.”
      Lindsay White
      Lindsay White was a SIP intern in 2018 and 2019 before joining NASA’s Pathways program in 2020. She completed her internship while earning her master’s degree in electrical engineering, specifically applied electromagnetics.
      During her SIP internship, White programmed software-defined radios, a communication system where computer software is used to replace physical radio hardware like modulators and amplifiers, to create test benches for the development of novel signals. That internship evolved into learning more about Field Programmable Gate Arrays (FPGAs) in her second summer, a customizable hardware that can be reconfigured into different digital circuits. White then applied her FPGA knowledge to laser communications missions.
      White’s first summer in the internship program confirmed that she wanted to work for NASA. “The environment is so welcoming and supportive,” she said. “People want to answer your questions and help you. I enjoyed the work I was doing and learned a ton.”
      White sees a direct relationship between the work she completed as an intern and her current role as a signal analysis engineer at NASA’s Jet Propulsion Laboratory in Southern California. “The work I do now is an evolution of all the work I did as an intern. I’m applying the skills I gained by working in laser communications to my current work in radio communications.”
      Lindsay White, SCaN Internship Project (SIP) Intern in 2018 and 2019.NASA White works on the digital signal processing inside the Mars Sample Return mission’s radio, as well as a research and development project called Universal Space Transponder Lite, a flexible, modular radio with a broad series of potential applications. Sometimes even she is surprised by the importance of her role to NASA’s commitment to space exploration.
      “The impact is astonishing,” White said. “My work is essential to a Mars mission. Something I’m touching is going to end up on Mars.”
      The impact is astonishing. My work is essential to a Mars mission. Something I'm touching is going to end up on Mars.
      Lindsay White
      Signal Analysis Engineer at NASA's Jet Propulsion Laboratory
      White advises incoming interns to use their time in the program to develop their understanding of the agency’s personnel and projects. “SIP provides an opportunity to talk with people you otherwise wouldn’t meet,” said White. “Learning the different things NASA is working on can be even more important than hitting stretch goals on your technical project.”
      White’s advice for students considering a SIP internship is straightforward: “Do it! Even if you don’t have a technical background, there’s a spot for you at NASA.”
      By Korine Powers
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASASCaN @NASASCaN@NearSpaceNet More about the SCaN Internship Program, including how to apply Explore More
      6 min read Meet the NASA Interns Advancing Space Communications & Navigation
      NASA celebrates National Intern Day and all the interns who are shaping the future of…
      Article 12 months ago 6 min read From Quantum Optics to Increased Risk Posture: Student Innovations at NASA
      Article 6 years ago 6 min read NASA Celebrates World Quantum Day
      On today’s World Quantum Day, NASA celebrates its on-going quantum research being done across the…
      Article 1 year ago Share
      Details
      Last Updated Jul 25, 2024 EditorKatherine SchauerContactKatherine Schauerkatherine.s.schauer@nasa.govLocationGoddard Space Flight Center Related Terms
      Space Communications & Navigation Program Communicating and Navigating with Missions Goddard Space Flight Center Space Communications Technology View the full article
  • Check out these Videos

×
×
  • Create New...