Jump to content

Interacting galaxies VV 191 (Webb and Hubble composite image)


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      ESA/Hubble & NASA, C. Kilpatrick This NASA/ESA Hubble Space Telescope image treats viewers to a wonderfully detailed snapshot of the spiral galaxy NGC 3430 that lies 100 million light-years from Earth in the constellation Leo Minor. Several other galaxies, located relatively nearby to this one, are just beyond the frame of this image; one is close enough that gravitational interaction is driving some star formation in NGC 3430 — visible as bright-blue patches near to but outside of the galaxy’s main spiral structure. This fine example of a galactic spiral holds a bright core from which a pinwheel array of arms appears to radiate outward. Dark dust lanes and bright star-forming regions help define these spiral arms.
      NGC 3430’s distinct shape may be one reason why astronomer Edwin Hubble used to it to help define his classification of galaxies. Namesake of the Hubble Space Telescope, Edwin Hubble authored a paper in 1926 that outlined the classification of some four hundred galaxies by their appearance — as either spiral, barred spiral, lenticular, elliptical, or irregular. This straightforward typology proved extremely influential, and the detailed schemes astronomers use today are still based on Edwin Hubble’s work. NGC 3430 itself is a spiral lacking a central bar with open, clearly defined arms — classified today as an SAc galaxy.
      Image credit: ESA/Hubble & NASA, C. Kilpatrick
      View the full article
    • By NASA
      2 min read
      Hubble Images a Classic Spiral 
      This NASA/ESA Hubble Space Telescope image features the majestic spiral galaxy NGC 3430. ESA/Hubble & NASA, C. Kilpatrick This NASA/ESA Hubble Space Telescope image treats viewers to a wonderfully detailed snapshot of the spiral galaxy NGC 3430 that lies 100 million light-years from Earth in the constellation Leo Minor. Several other galaxies, located relatively nearby to this one, are just beyond the frame of this image; one is close enough that gravitational interaction is driving some star formation in NGC 3430 — visible as bright-blue patches near to but outside of the galaxy’s main spiral structure. This fine example of a galactic spiral holds a bright core from which a pinwheel array of arms appears to radiate outward. Dark dust lanes and bright star-forming regions help define these spiral arms.
      NGC 3430’s distinct shape may be one reason why astronomer Edwin Hubble used to it to help define his classification of galaxies. Namesake of the Hubble Space Telescope, Edwin Hubble authored a paper in 1926 that outlined the classification of some four hundred galaxies by their appearance — as either spiral, barred spiral, lenticular, elliptical, or irregular. This straightforward typology proved extremely influential, and the detailed schemes astronomers use today are still based on Edwin Hubble’s work. NGC 3430 itself is a spiral lacking a central bar with open, clearly defined arms — classified today as an SAc galaxy.
      Astronomer Edwin Hubble pioneered the study of galaxies based simply on their appearance. This “Field Guide” outlines Hubble’s classification scheme using images from his namesake telescope. Credit: NASA’s Goddard Space Flight Center; Lead Producer: Miranda Chabot; Lead Writer: Andrea Gianopoulos
      Download this image

      Explore More

      Hubble’s Galaxies


      Astronomer Edwin Hubble

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Jul 25, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Missions Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Hubble Design



      Hubble Science Highlights


      View the full article
    • By European Space Agency
      An international team of astronomers using the NASA/ESA/CSA James Webb Space Telescope have directly imaged an exoplanet roughly 12 light-years from Earth. While there were hints that the planet existed, it had not been confirmed until Webb imaged it. The planet is one of the coldest exoplanets observed to date.
      View the full article
    • By NASA
      6 Min Read NASA’s Webb Images Cold Exoplanet 12 Light-Years Away
      This image of the gas-giant exoplanet Epsilon Indi Ab was taken with the coronagraph on NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument). A star symbol marks the location of the host star Epsilon Indi A, whose light has been blocked by the coronagraph, resulting in the dark circle marked with a dashed white line (full image below) An international team of astronomers using NASA’s James Webb Space Telescope has directly imaged an exoplanet roughly 12 light-years from Earth. The planet, Epsilon Indi Ab, is one of the coldest exoplanets observed to date.
      The planet is several times the mass of Jupiter and orbits the K-type star Epsilon Indi A (Eps Ind A), which is around the age of our Sun, but slightly cooler. The team observed Epsilon Indi Ab using the coronagraph on Webb’s MIRI (Mid-Infrared Instrument). Only a few tens of exoplanets have been directly imaged previously by space- and ground-based observatories.
      Image A: Exoplanet Epsilon Indi Ab
      This image of the gas-giant exoplanet Epsilon Indi Ab was taken with the coronagraph on NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument). A star symbol marks the location of the host star Epsilon Indi A, whose light has been blocked by the coronagraph, resulting in the dark circle marked with a dashed white line. Epsilon Indi Ab is one of the coldest exoplanets ever directly imaged. Light at 10.6 microns was assigned the color blue, while light at 15.5 microns was assigned the color orange. MIRI did not resolve the planet, which is a point source. “Our prior observations of this system have been more indirect measurements of the star, which actually allowed us to see ahead of time that there was likely a giant planet in this system tugging on the star,” said team member Caroline Morley of the University of Texas at Austin. “That’s why our team chose this system to observe first with Webb.”
      “This discovery is exciting because the planet is quite similar to Jupiter — it is a little warmer and is more massive, but is more similar to Jupiter than any other planet that has been imaged so far,” added lead author Elisabeth Matthews of the Max Planck Institute for Astronomy in Germany.
      Previously imaged exoplanets tend to be the youngest, hottest exoplanets that are still radiating much of the energy from when they first formed. As planets cool and contract over their lifetime, they become significantly fainter and therefore harder to image.
      A Solar System Analog
      “Cold planets are very faint, and most of their emission is in the mid-infrared,” explained Matthews. “Webb is ideally suited to conduct mid-infrared imaging, which is extremely hard to do from the ground. We also needed good spatial resolution to separate the planet and the star in our images, and the large Webb mirror is extremely helpful in this aspect.”
      Epsilon Indi Ab is one of the coldest exoplanets to be directly detected, with an estimated temperature of 35 degrees Fahrenheit (2 degrees Celsius) — colder than any other imaged planet beyond our solar system, and colder than all but one free-floating brown dwarf. The planet is only around 180 degrees Fahrenheit (100 degrees Celsius) warmer than gas giants in our solar system. This provides a rare opportunity for astronomers to study the atmospheric composition of true solar system analogs.
      “Astronomers have been imagining planets in this system for decades; fictional planets orbiting Epsilon Indi have been the sites of Star Trek episodes, novels, and video games like Halo,” added Morley. “It’s exciting to actually see a planet there ourselves, and begin to measure its properties.”
      Not Quite As Predicted
      Epsilon Indi Ab is the twelfth closest exoplanet to Earth known to date and the closest planet more massive than Jupiter. The science team chose to study Eps Ind A because the system showed hints of a possible planetary body using a technique called radial velocity, which measures the back-and-forth wobbles of the host star along our line of sight.
      “While we expected to image a planet in this system, because there were radial velocity indications of its presence, the planet we found isn’t what we had predicted,” shared Matthews. “It’s about twice as massive, a little farther from its star, and has a different orbit than we expected. The cause of this discrepancy remains an open question. The atmosphere of the planet also appears to be a little different than the model predictions. So far we only have a few photometric measurements of the atmosphere, meaning that it is hard to draw conclusions, but the planet is fainter than expected at shorter wavelengths.”
      The team believes this may mean there is significant methane, carbon monoxide, and carbon dioxide in the planet’s atmosphere that are absorbing the shorter wavelengths of light. It might also suggest a very cloudy atmosphere.
      The direct imaging of exoplanets is particularly valuable for characterization. Scientists can directly collect light from the observed planet and compare its brightness at different wavelengths. So far, the science team has only detected Epsilon Indi Ab at a few wavelengths, but they hope to revisit the planet with Webb to conduct both photometric and spectroscopic observations in the future. They also hope to detect other similar planets with Webb to find possible trends about their atmospheres and how these objects form.
      NASA’s upcoming Nancy Grace Roman Space Telescope will use a coronagraph to demonstrate direct imaging technology by photographing Jupiter-like worlds orbiting Sun-like stars – something that has never been done before. These results will pave the way for future missions to study worlds that are even more Earth-like.
      These results were taken with Webb’s Cycle 1 General Observer program 2243 and have been published in the journal Nature.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results published in the journal Nature.

      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu , Hannah Braun hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.

      Related Information
      Animation: Eclipse/Coronagraph Animation
      Webb Blog: NASA’s Webb Takes Its First-Ever Direct Image of Distant World
      Webb Blog: How Webb’s Coronagraphs Reveal Exoplanets in the Infrared
      Article: Webb’s Impact on Exoplanet Research
      NASA’s Exoplanet Website
      More Webb News
      More Webb Images
      Webb Mission Page

      Related For Kids
      What is a exoplanet?
      What is the Webb Telescope?
      SpacePlace for Kids

      En Español
      Para Niños : Qué es una exoplaneta?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope
      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
      Exoplanets
      Exoplanet Stories
      Universe
      Share
      Details
      Last Updated Jul 23, 2024 EditorStephen SabiaContactLaura Betzlaura.e.betz@nasa.gov Related Terms
      Astrophysics Exoplanet Science Exoplanets Gas Giant Exoplanets Goddard Space Flight Center James Webb Space Telescope (JWST) Science & Research Studying Exoplanets The Universe View the full article
    • By Amazing Space
      James Webb Telescope Discovers A Smelly Planet!
  • Check out these Videos

×
×
  • Create New...