Jump to content

Watch NASA's DART spacecraft smashes into asteroid Dimorphos


Recommended Posts

On Sept. 26, 2022, at 7:14 pm EDT, DART intentionally crashed into Dimorphos, the asteroid moonlet in the double-asteroid system of Didymos. It was the world’s first test of the kinetic impact mitigation technique, using a spacecraft to deflect an asteroid that poses no threat to Earth, and modifying the object’s orbit. DART is a test for defending Earth against potential asteroid or comet hazards. 

dart%20nasa%20asteroid%20impact%20(1).jpg

See the final moments of the spacecraft's existence. NASA's DART spacecraft slams into 'moonlet' in asteroid system. 

NASA's Double Asteroid Redirection Test spacecraft beamed back its final moments before colliding with the asteroid Dimorphos in an attempt to change its orbit.

   

The dramatic impact expelled a cloud of dust and turned the asteroid into a type of comet. First Images from Italian Space Agency’s LICIACube Satellite mage captured by the Italian Space Agency’s LICIACube a few minutes after the intentional collision of NASA’s Double Asteroid Redirection Test (DART) mission with its target asteroid, Dimorphos.

   

NASA's Hubble and James Webb space telescopes captured imagery of the aftermath from impact. 

dart%20nasa%20asteroid%20impact%20(2).jpg

Amazing that NASA is able to crash a small spacecraft into a "space rock" which is just only 170 meters (560 ft) in diameter and 10.6 million km (6.6 million miles) from Earth as a test for defending Earth against potential asteroid or comet hazards or... a test for defending Earth against potential alien spaceships that may approach Earth in the near future?

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Crane operator Rebekah Tolatovicz, a shift mechanical technician lead for Artic Slope Regional Corporation at NASA’s Kennedy Space Center in Florida, operates a 30-ton crane to lift the agency’s Artemis II Orion spacecraft out of the recently renovated altitude chamber to the Final Assembly and Systems Testing, or FAST, cell inside NASA Kennedy’s Neil A. Armstrong Operations and Checkout Building on April 27.
      During her most recent lift July 10, Tolatovicz helped transfer Orion back to the FAST cell following vacuum chamber qualification testing in the altitude chamber earlier this month. This lift is one of around 250 annual lifts performed at NASA Kennedy by seven operator/directors and 14 crane operators on the ASRC Orion team.
      “At the time of the spacecraft lift, I focus solely on what’s going on in the moment of the operation,” explains Tolatovicz. “Listening for the commands from the lift director, making sure everyone is safe, verifying the vehicle is clear, and ensuring the crane is moving correctly.”
      All Orion crane operators are certified after classroom and on-the-job training focusing on areas such as rigging, weight and center of gravity, mastering crane controls, crane securing, assessing safety issues, and emergency procedures. Once certified, they progress through a series of the different lifts required for Orion spacecraft operations, from simple moves to the complex full spacecraft lift.
      “It’s not until after the move is complete and the vehicle is secured that I have a moment to think about how awesome it is to be a part of history on the Orion Program and do what I get to do every day with a team of the most amazing people,” Tolatovicz said.
      Photo credit: NASA/Amanda Stevenson
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Mechanical Engineer Jeff Pollack finalizes his design for the integration of the laser communications terminal into the PC-12 research aircraft.Credit: NASA/Sara Lowthian NASA invites media to attend a real-time laser communications experiment at the agency’s Glenn Research Center in Cleveland. Researchers are testing a laser communications networking system that could enable the public to watch the first woman and first person of color walk on the Moon in HD during the Artemis missions.
      The media availability begins at 11 a.m. EDT on Tuesday, July 30 (weather permitting) at the NASA Glenn aircraft hangar. Media will have the opportunity to see NASA’s Pilatus PC-12 aircraft take off and to film researchers on the ground as they communicate with the airborne team.
      During these tests, researchers flying over Lake Erie will test communications between NASA Glenn and the aircraft using High-Rate Delay Tolerant Networking developed by Glenn. The data is transferred over laser communications links at a rate of 1.2 gigabits per second — faster than most home internet speeds.
      Earlier this summer, the research team streamed 4K video to the International Space Station from an aircraft for the first time in history.
      Media interested in attending should contact Jan Wittry at jan.m.wittry-1@nasa.gov by 2 p.m. EDT on Monday, July 29.
      These experiments are part of NASA’s goal to stream very high-bandwidth video and other data from deep space, enabling future human missions beyond Earth orbit. In December, NASA streamed a video featuring a cat named Taters back to Earth from nearly 19 million miles away in deep space using NASA’s laser communications demonstration, marking a historic milestone.
      About Laser Communications
      Historically, missions have relied on the use of radio waves to exchange information to and from space. Now, NASA is embracing the power of laser communications, also known as optical communications, which uses infrared light rather than radio waves to transmit more data at once.
      As NASA explores the lunar surface with advanced science instruments and captures high-definition data, researchers will need faster ways to send large amounts of information to Earth. Laser communications will accelerate the data transfer process and enable 10 to 100 times more data transmitted back to Earth than current radio frequency systems.
      For more information on NASA, visit:
      http://www.nasa.govnasa.gov
      -end-
      Jan Wittry
      NASA Glenn Research Center, Cleveland
      216-433-5466
      jan.m.wittry-1@nasa.gov
      View the full article
    • By European Space Agency
      Launched less than two months ago, ESA’s EarthCARE satellite has already returned images from two of its four instruments. Now, it has also delivered the first images from its multispectral imager, showcasing various types of clouds and cloud temperatures worldwide. This instrument is set to add valuable context to the data from EarthCARE’s other instruments.
      View the full article
    • By NASA
      5 Min Read Watch Carbon Dioxide Move Through Earth’s Atmosphere
      Global CO2 ppm for January-March of 2020. This camera move orbits Earth from a distance. Credits:
      NASA’s Scientific Visualization Studio Earth (ESD) Earth Home Explore Climate Change Science in Action Multimedia Data For Researchers What we’re looking at:
      This global map shows concentrations of carbon dioxide as the gas moved through Earth’s atmosphere from January through March 2020, driven by wind patterns and atmospheric circulation. 
      Because of the model’s high resolution, you can zoom in and see carbon dioxide emissions rising from power plants, fires, and cities, then spreading across continents and oceans.  
      Global CO2 ppm for January-March of 2020. This camera move orbits Earth from a distance. Download this visualization from NASA’s Scientific Visualization Studio: https://svs.gsfc.nasa.gov/5196 Credits: NASA’s Scientific Visualization Studio “As policymakers and as scientists, we’re trying to account for where carbon comes from and how that impacts the planet,” said climate scientist Lesley Ott at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “You see here how everything is interconnected by these different weather patterns.”
      You see here how everything is interconnected by these different weather patterns.
      Lesley Ott
      NASA Climate scientist
      What are the sources of CO2? 
      Over China, the United States, and South Asia, the majority of emissions came from power plants, industrial facilities, and cars and trucks, Ott said. Meanwhile, in Africa and South America, emissions largely stemmed from fires, especially those related to land management, controlled agricultural burns and deforestation, along with the burning of oil and coal. Fires release carbon dioxide as they burn.
      Why does the map look like it’s pulsing? 
      Global CO2 ppm for January-March of 2020. This camera move zooms in on the eastern United States. Download this visualization from NASA’s Scientific Visualization Studio: https://svs.gsfc.nasa.gov/5196 Credits: NASA’s Scientific Visualization Studio There are two primary reasons for the pulsing: First, fires have a clear day-night cycle. They typically flare up during the day and die down at night. 
      Second, you’re seeing the absorption and release of carbon dioxide as trees and plants photosynthesize. Earth’s land and oceans absorb about 50% of carbon dioxide; these are natural carbon sinks. Plants take up carbon dioxide during the day as they photosynthesize and then release it at night through respiration. Notice that much of the pulsing occurred in regions with lots of trees, like mid- or high-latitude forests. And because the data were taken during the Southern Hemisphere summer, you see more pulsing in the tropics and South America, where it was the active growing season. 
      Some of the pulsing also comes from the planetary boundary layer — the lowest 3,000 feet (900 meters) of the atmosphere — which rises as the Earth’s surface is heated by sunlight during the day, then falls as it cools at night.
      The data that drives it:  
      The map was created by NASA’s Scientific Visualization Studio using a model called GEOS, short for the Goddard Earth Observing System. GEOS is a high-resolution weather model, powered by supercomputers, that is used to simulate what was happening in the atmosphere — including storm systems, cloud formations, and other natural events. GEOS pulls in billions of data points from ground observations and satellite instruments, such as the Terra satellite’s MODIS  and the Suomi-NPP satellite’s VIIRS instruments. Its resolution is more than 100 times greater than a typical weather model. 
      Ott and other climate scientists wanted to know what GEOS would show if it was used to model the movement and density of carbon dioxide in the global atmosphere. 
      “We had this opportunity to say: can we tag along and see what really high-resolution CO2 looks like?” Ott said. “We had a feeling we were going to see plume structures and things that we’ve never been able to see when we do these coarser resolution simulations.” 
      Her instinct was right. “Just seeing how persistent the plumes were and the interaction of the plumes with weather systems, it was tremendous.”
      Why it matters:
      NASA’s Goddard Space Flight Center/Scientific Visualization Studio/ Katie Jepson We can’t tackle climate change without confronting the fact that we’re emitting massive amounts of CO2, and it’s warming the atmosphere, Ott said. 
      Carbon dioxide is a heat-trapping greenhouse gas and the primary reason for Earth’s rising temperatures. As CO2 builds in the atmosphere, it warms our planet. This is clear in the numbers. 2023 was the hottest year on record, according to scientists from NASA’s Goddard Institute for Space Studies (GISS) in New York. Most of the 10 hottest years on record have occurred in the past decade.
      All this carbon dioxide isn’t harmful to air quality. In fact, we need some carbon dioxide to keep the planet warm enough for life to exist. But when too much CO2 is pumped into the atmosphere, the Earth warms too much and too fast. That’s what has been happening for at least the past half century. The concentration of carbon dioxide in the atmosphere increased from approximately 278 parts per million in 1750, the beginning of the industrial era, to 427 parts per million in May 2024.

      Read More: Emissions from Fossil Fuels Continue to Rise

      Human activities have “unequivocally caused warming,” according to the latest report by the Intergovernmental Panel on Climate Change. This warming is leading to all sorts of changes to our climate, including more intense storms, wildfires, heat waves, and rising sea levels.
      Inside the SVS studio:
      Carbon dioxide exists everywhere in the atmosphere, and the challenge for AJ Christensen, a senior visualization designer at NASA’s Goddard Space Flight Center, was to show the differences in density of this invisible gas.
      “We didn’t want people to get the impression that there was no carbon dioxide in these sparser regions,” Christensen said. “But we also wanted to really highlight the dense regions because that’s the interesting feature of the data. We were trying to show that there’s a lot of density over New York and Beijing.”  
      Data visualizations help people understand how Earth’s systems work, and they can help scientists find patterns in massive datasets, Ott said. 
      “What’s happening is you’re stitching together this very complex array of models to make use of the different satellite data, and that’s helping us fill in this broad puzzle of all the processes that control carbon dioxide,” Ott said. “The hope is that if we understand greenhouse gases really well today, we’ll be able to build models that better predict them over the next decades or even centuries.”
      For more information and data on greenhouse gases, visit the U.S. Greenhouse Gas Center.
      About the Author
      Jenny Marder

      Share








      Details
      Last Updated Jul 23, 2024 Location Goddard Space Flight Center Related Terms
      Climate Change Earth Earth’s Atmosphere Greenhouse Gases Explore More
      3 min read Registration Opens for the 2024 NASA International Space Apps Challenge
      NASA invites innovators, technologists, storytellers, and problem solvers to register for the 2024 NASA Space…


      Article


      5 days ago
      4 min read NASA Celebrates 20 Years of Earth-Observing Aura Satellite
      A few of the many highlights from the last 20 years since Aura Launched.


      Article


      7 days ago
      5 min read Alphabet Soup: NASA’s GOLD Finds Surprising C, X Shapes in Atmosphere


      Article


      4 weeks ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Official NASA’s SpaceX Crew-9 portraits with Zena Cardman, Nick Hague, Stephanie Wilson and Aleksandr Gorbunov. Credit: NASA Media accreditation now is open for the launch of NASA’s ninth rotational mission of a SpaceX Falcon 9 rocket and Dragon spacecraft that will carry astronauts to the International Space Station for a science expedition. This mission is part of NASA’s Commercial Crew Program.
      Launch of NASA’s SpaceX Crew-9 mission is targeted for no earlier than mid-August from Launch Complex 39A at the agency’s Kennedy Space Center in Florida, pending completion of the company’s ongoing Falcon 9 investigation. Crew safety and mission assurance are top priorities for NASA and its partners.
      The launch will carry NASA astronauts Zena Cardman, commander; Nick Hague, pilot; and Stephanie Wilson, mission specialist; along with Roscosmos cosmonaut Alexander Gorbunov, mission specialist. This is the first spaceflight for Cardman and Gorbunov, the second mission to the orbiting laboratory for Hague, and fourth spaceflight for Wilson, who has spent 42 days in space aboard three space shuttle Discovery missions – STS-120, STS-121, and STS-131.
      U.S. media, international media without U.S. citizenship, and U.S. citizens representing international media organizations must apply by 11:59 p.m. EDT on Wednesday, July 31. All accreditation requests must be submitted online at:
      https://media.ksc.nasa.gov
      NASA’s media accreditation policy is online. For questions about accreditation or special logistical requests, email: ksc-media-accreditat@mail.nasa.gov. Requests for space for satellite trucks, tents, or electrical connections are due by Thursday, Aug. 1.
      For other questions, please contact NASA Kennedy’s newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371.
      For launch coverage and more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov
      Share
      Details
      Last Updated Jul 17, 2024 LocationNASA Headquarters Related Terms
      Humans in Space Commercial Crew Commercial Space International Space Station (ISS) ISS Research Johnson Space Center Kennedy Space Center View the full article
  • Check out these Videos

×
×
  • Create New...