Jump to content

Watch live: first impressions of Gaia data release 3


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This summer, NASA welcomed interns with professional teaching experience to help make the agency’s data more interactive and accessible in the classroom. Their efforts are an important step in fostering the education and curiosity of the Artemis Generation of students who will shape the future workforce.
      Diane Ripollone: Making Activities Accessible for Low-Vision Students
      In the center, Diane Ripollone smiles in a blue jacket with the blue, white, and red NASA logo on the left and a SOFIA patch on the right. Behind Diane is the SOFIA aircraft and her arm rests on a railing beside her. Credit: Diane Ripollone A 35-year-veteran educator, Diane Ripollone teaches Earth science, astronomy, and physics to high school students in North Carolina. In her decades of experience, she’s seen firsthand how students with physical challenges can face difficulties in connecting with lessons. She decided to tackle the issue head-on with her internship.
      Ripollone supports the My NASA Data Program, which provides educational materials to interact with live data collected by NASA satellites, observatories, and sensors worldwide. As a NASA intern, she has worked to create physical materials with braille for students with- vision limitations.
      “It’s a start for teachers,” Ripollone said. “Although every classroom is different, this helps to provide teachers a jumpstart to make engaging lesson plans centered around real NASA data.” Her NASA internship has excited and inspired her students, according to Ripollone. “My students have been amazed! I see their eyes open wide,” she said. “They say, ‘My teacher is working for NASA!'”
      Felicia Haseleu: Improving Reading and Writing Skills
      North Dakota teacher  Felicia Haseleu never imagined she’d be a NASA intern until a colleague forwarded the opportunity to her inbox. A teacher on her 11th year, she has seen how COVID-19 has affected students: “It’s caused a regression in reading and writing ability,” a shared impact that was seen in students nationwide.
      A science teacher passionate about reading and writing, Felicia set out to utilize these in the science curriculum. As an intern with My NASA Data, she’s prepared lesson plans that combine using the scientific method with creative writing, allowing students to strengthen their reading and writing skills while immersing themselves in science.
      Haseleu anticipates her NASA internship will provide benefits inside and outside the classroom.
      “It’s going to be awesome to return to the classroom with all of these materials,” she said. “Being a NASA intern has been a great experience! I’ve felt really supported and you can tell that NASA is all encompassing and supports one another. From the camaraderie to NASA investing in interns, it’s nice to feel valued by NASA.”
      Teri Minami: Hands-on Lesson for Neurodivergent and Artistic Students
      Teri Minami poses in a white lab coat, lilac gloves, glasses, and “Dexter” name tag. She is on the right of the image with a coworker on the left. Red school lockers line the wall behind them. Credit: Teri Minami “I’ve never been a data-whiz; I’ve always connected with science hands-on or through art,” said NASA intern Teri Minami, a teacher of 10 years in coastal Virginia. She cites her personal experience in science to guide her to develop lessons using NASA data for neurodivergent students or those with a more artistic background.
      Through her NASA internship, she aims to create lesson plans which allow students to engage first-hand with science while outdoors, such as looking at water quality data, sea level ice, and CO2 emissions, taking their own measurements, and doing their own research on top of that.
      Although many people associate being an intern with being an undergraduate in college, NASA interns come from all ages and backgrounds. In 2024, the agency’s interns ranged in age from 16 to 61 and included high school students, undergraduates, graduate students, doctoral students, and teachers.

      Interested in joining NASA as an intern? Apply at intern.nasa.gov.
      Explore More
      8 min read The Future is Bright: Johnson Space Center Interns Shine Throughout Summer Term
      Article 2 days ago 3 min read NASA to Host Panels, Forums, and More at Oshkosh 2024
      Article 7 days ago 3 min read NASA Awards Launch Excitement for STEM Learning Nationwide
      NASA awards inspire the next generation of explorers by helping community institutions like museums, science…
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      NASA Internship Programs
      For Educators
      For Colleges and Universities
      Learning Resources
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Mechanical Engineer Jeff Pollack finalizes his design for the integration of the laser communications terminal into the PC-12 research aircraft.Credit: NASA/Sara Lowthian NASA invites media to attend a real-time laser communications experiment at the agency’s Glenn Research Center in Cleveland. Researchers are testing a laser communications networking system that could enable the public to watch the first woman and first person of color walk on the Moon in HD during the Artemis missions.
      The media availability begins at 11 a.m. EDT on Tuesday, July 30 (weather permitting) at the NASA Glenn aircraft hangar. Media will have the opportunity to see NASA’s Pilatus PC-12 aircraft take off and to film researchers on the ground as they communicate with the airborne team.
      During these tests, researchers flying over Lake Erie will test communications between NASA Glenn and the aircraft using High-Rate Delay Tolerant Networking developed by Glenn. The data is transferred over laser communications links at a rate of 1.2 gigabits per second — faster than most home internet speeds.
      Earlier this summer, the research team streamed 4K video to the International Space Station from an aircraft for the first time in history.
      Media interested in attending should contact Jan Wittry at jan.m.wittry-1@nasa.gov by 2 p.m. EDT on Monday, July 29.
      These experiments are part of NASA’s goal to stream very high-bandwidth video and other data from deep space, enabling future human missions beyond Earth orbit. In December, NASA streamed a video featuring a cat named Taters back to Earth from nearly 19 million miles away in deep space using NASA’s laser communications demonstration, marking a historic milestone.
      About Laser Communications
      Historically, missions have relied on the use of radio waves to exchange information to and from space. Now, NASA is embracing the power of laser communications, also known as optical communications, which uses infrared light rather than radio waves to transmit more data at once.
      As NASA explores the lunar surface with advanced science instruments and captures high-definition data, researchers will need faster ways to send large amounts of information to Earth. Laser communications will accelerate the data transfer process and enable 10 to 100 times more data transmitted back to Earth than current radio frequency systems.
      For more information on NASA, visit:
      http://www.nasa.govnasa.gov
      -end-
      Jan Wittry
      NASA Glenn Research Center, Cleveland
      216-433-5466
      jan.m.wittry-1@nasa.gov
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A graphic representation of a laser communications relay between the International Space Station, the Laser Communications Relay Demonstration spacecraft, and the Earth.Credit: NASA/Dave Ryan A team at NASA’s Glenn Research Center in Cleveland streamed 4K video footage from an aircraft to the International Space Station and back for the first time using optical, or laser, communications. The feat was part of a series of tests on new technology that could provide live video coverage of astronauts on the Moon during the Artemis missions.

      Historically, NASA has relied on radio waves to send information to and from space. Laser communications use infrared light to transmit 10 to 100 times more data faster than radio frequency systems.

      From left to right, Kurt Blankenship, research aircraft pilot, Adam Wroblewski, instrument operator, and Shaun McKeehan, High-Rate Delay Tolerant Networking software developer, wait outside the PC-12 aircraft, preparing to take flight. Credit: NASA/Sara Lowthian-Hanna Working with the Air Force Research Laboratory and NASA’s Small Business Innovation Research program, Glenn engineers temporarily installed a portable laser terminal on the belly of a Pilatus PC-12 aircraft. They then flew over Lake Erie sending data from the aircraft to an optical ground station in Cleveland. From there, it was sent over an Earth-based network to NASA’s White Sands Test Facility in Las Cruces, New Mexico, where scientists used infrared light signals to send the data.

      The signals traveled 22,000 miles away from Earth to NASA’s Laser Communications Relay Demonstration (LCRD), an orbiting experimental platform. The LCRD then relayed the signals to the ILLUMA-T (Integrated LCRD LEO User Modem and Amplifier Terminal) payload mounted on the orbiting laboratory, which then sent data back to Earth. During the experiments, High-Rate Delay Tolerant Networking (HDTN), a new system developed at Glenn, helped the signal penetrate cloud coverage more effectively.

      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      4K video footage was routed from the PC-12 aircraft to an optical ground station in Cleveland. From there, it was sent over an Earth-based network to NASA’s White Sands Test Facility in Las Cruces, New Mexico. The signals were then sent to NASA’s Laser Communications Relay Demonstration spacecraft and relayed to the ILLUMA-T payload on the International Space Station. Video Credit: NASA/Morgan Johnson “These experiments are a tremendous accomplishment,” said Dr. Daniel Raible, principal investigator for the HDTN project at Glenn. “We can now build upon the success of streaming 4K HD videos to and from the space station to provide future capabilities, like HD videoconferencing, for our Artemis astronauts, which will be important for crew health and activity coordination.”

      Mechanical Engineer Jeff Pollack finalizes his design for the integration of the laser communications terminal into the PC-12 research aircraft.Credit: NASA/Sara Lowthian-Hanna After each flight test, the team continuously improved the functionality of their technology. Aeronautics testing of space technology often finds issues more effectively than ground testing, while remaining more cost-effective than space testing. Proving success in a simulated space environment is key to moving new technology from a laboratory into the production phase.

      “Teams at Glenn ensure new ideas are not stuck in a lab, but actually flown in the relevant environment to ensure this technology can be matured to improve the lives of all of us,” said James Demers, chief of aircraft operations at Glenn.

      The flights were part of an agency initiative to stream high-bandwidth video and other data from deep space, enabling future human missions beyond low Earth orbit. As NASA continues to develop advanced science instruments to capture high-definition data on the Moon and beyond, the agency’s Space Communications and Navigation, or SCaN, program embraces laser communications to send large amounts of information back to Earth.
      The optical system temporarily installed on the belly of the PC-12 aircraft has proven to be a very reliable high-performance system to communicate with prototype flight instrumentation and evaluate emerging technologies to enhance high-bandwidth systems.Credit: NASA/Sara Lowthian-Hanna While the ILLUMA-T payload is no longer installed on the space station, researchers will continue to test 4K video streaming capabilities from the PC-12 aircraft through the remainder of July, with the goal of developing the technologies needed to stream humanity’s return to the lunar surface through Artemis.
      Explore More
      10 min read LIVE: NASA is with you from Oshkosh
      Article 1 hour ago 5 min read NASA’s 21st Northrop Grumman Mission Launches Scientific Studies to Station
      Article 1 day ago 5 min read Ground Antenna Trio to Give NASA’s Artemis Campaign ‘LEGS’ to Stand On
      Article 2 days ago View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA astronaut Kate Rubins uses a hammer to get a drive tube into the ground to collect a pristine soil sample during a nighttime simulated moonwalk in the San Francisco Volcanic Field in Northern Arizona on May 16, 2024. Surviving and operating through the lunar night was identified as a top-ranked 2024 Civil Space Challenge, and tests such as these help NASA astronauts and engineers practice end-to-end lunar operations. NASA/Josh Valcarcel This spring, NASA published a document overviewing almost 200 technology areas requiring further development to meet future exploration, science, and other mission needs – and asked the aerospace community to rate their importance. The goal was to better integrate the community’s most pervasive technical challenges, or shortfalls, to help guide NASA’s space technology development and investments.
      Today, NASA’s Space Technology Mission Directorate (STMD) released the 2024 Civil Space Shortfall Ranking document, integrating inputs from NASA mission directorates and centers, small and large industry organizations, government agencies, academia, and other interested individuals. STMD will use the inaugural list and annual updates as one of many factors to guide its technology development projects and investments.
      “Identifying consensus among challenges across the aerospace industry will help us find solutions, together,” said NASA Associate Administrator Jim Free. “This is the groundwork for strengthening the nation’s technological capabilities to pave the way for new discoveries, economic opportunities, and scientific breakthroughs that benefit humanity.”
      The integrated results show strong stakeholder agreement among the 30 most important shortfalls. At the top of the list is surviving and operating through the lunar night, when significant and sustained temperature drops make it difficult to run science experiments, rovers, habitats, and more. Solution technologies could include new power, thermal management, and motor systems. Second and third on the integrated list are the need for high-power energy generation on the Moon and Mars and high-performance spaceflight computing.
      The inputs received are already igniting meaningful conversations to help us and our stakeholders make smarter decisions. We will refine the process and results annually to ensure we maintain a useful approach and tool that fosters resilience in our space technology endeavors.”
      Michelle Munk
      Acting Chief Architect for STMD
      Highly rated capability areas in the top 20 included advanced habitation systems, autonomous systems and robotics, communications and navigation, power, avionics, and nuclear propulsion. Beyond the top quartile, stakeholder shortfall scores varied, likely aligning with their interests and expertise. With many shortfalls being interdependent, it emphasizes the need to make strategic investments across many areas to maintain U.S. leadership in space technology and drive economic growth.
      STMD is evaluating its current technology development efforts against the integrated list to identify potential adjustments within its portfolio.
      “This effort is an excellent example of our directorates working together to assess future architecture needs that will enable exploration and science for decades to come,” said Nujoud Merancy, deputy associate administrator for the Strategy and Architecture Office within NASA’s Exploration Systems Development Mission Directorate.
      The 2024 results are based on 1,231 total responses, including 769 internal and 462 external responses. Twenty were consolidated responses, representing multiple individuals from the same organization. Once average shortfall scores were calculated for each organization, STMD grouped, totaled, and averaged scores for nine stakeholder groups and then applied pre-determined weights to each to create the overall ranking. In the document, NASA also published the ranked results for each stakeholder group based on the 2024 feedback.
      The rankings are based on the numerical scores received and not responses to the open-ended questions. NASA anticipates the qualitative feedback will uncover additional insights and more.
      NASA will host a webinar to overview the ranking process and results on July 26, 2024, at 2 p.m. EDT.
      Register for the Stakeholder Webinar “Communicating our most pressing technology challenges is a great way to tap into the abilities across all communities to provide solutions to critical problems,” said Dr. Carolyn Mercer, chief technologist for NASA’s Science Mission Directorate.
      To learn more about the inaugural civil space shortfall feedback opportunity and results as well as monitor future feedback opportunities, visit:
      www.nasa.gov/civilspaceshortfalls

      View the full article
    • By NASA
      NASA Astronaut Eileen Collins, STS-93 commander, looks through a checklist on the space shuttle Columbia’s middeck in this July 1999 image. Collins was the first female shuttle commander.
      Collins graduated in 1979 from Air Force Undergraduate Pilot Training at Vance AFB, Oklahoma, where she was a T-38 instructor pilot until 1982. She continued her career as an instructor pilot of different aircraft until 1989. She was selected for the astronaut program while attending the Air Force Test Pilot School at Edwards AFB, California, which she graduated from in 1990. Collins became an astronaut in 1991 and over the course of four spaceflights, logged over 872 hours in space. She retired from NASA in May 2006.
      Image credit: NASA
      View the full article
  • Check out these Videos

×
×
  • Create New...