Jump to content

Saucer-shaped craft with antenna on top that collects lightning during thunderstorm filmed in Missouri


Recommended Posts

During a severe electrical thunderstorm on June 7, 2022 in Saint Joseph, Missouri, a photographer while filming the thunderstorm, noticed a huge saucer-shaped object in the center of the thunderstorm. 

ufo%20lightning%20storm.jpg

The object appears to have a strange antenna on top of it that collects lightning, which is easily recognizable as lightning bolts are connected to the antenna. 

Since it seems that the vapor clouds are influenced by the shape of the object, I suppose that the object is not a natural cloud, but a solid craft created by intelligent design whether man-made or of alien origin. 

It is often said that UFOs use lightning to recharge their batteries. Could these images be proof of it? 

Footage of the thunderstorm with saucer shaped craft starts at about the 3.05 mark in the video.

 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA astronaut Don Pettit poses for a crew portrait at the Gagarin Cosmonaut Training Center.NASA During his fourth mission to the International Space Station, NASA astronaut Don Pettit will serve as a flight engineer and member of the Expedition 71/72 crew. After blasting off to space, Pettit will conduct scientific investigations and technology demonstrations to help prepare crew for future space missions.
      Pettit will launch on the Roscosmos Soyuz MS-26 spacecraft in September 2024, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner. The trio will spend approximately six months aboard the orbital laboratory.
      NASA selected Pettit as an astronaut in 1996. A veteran of three spaceflights, he made integral advancements in technology and demonstrations for human exploration. He served as a science officer for Expedition 6 in 2003, operated the robotic arm for STS-126 space shuttle Endeavour in 2008, and served as a flight engineer for Expedition 30/31 in 2012. Pettit has logged 370 days in space and conducted two spacewalks totaling 13 hours and 17 minutes.
      The Expedition 6 crew launched on STS-113 space shuttle Endeavour expecting to return on STS-114 space shuttle Discovery after a two and a half month mission. Following the space shuttle Columbia accident that grounded the shuttle fleet, the crew returned on the Soyuz TMA-1 spacecraft after five and a half months, landing in Kazakhstan. On his next 16-day mission, STS-126, Pettit helped expand the living quarters of the space station and installed a regenerative life support system to reclaim potable water from urine. During Expedition 30/31, Pettit also captured the first commercial cargo spacecraft, the SpaceX Dragon, using the robotic arm.
      A native from Silverton, Oregon, Pettit holds a bachelor’s degree in chemical engineering from Oregon State University, Corvallis, and a doctorate in chemical engineering from the University of Arizona, Tucson. Prior to his career with NASA, Pettit worked as a staff scientist at the Los Alamos National Laboratory in New Mexico.
      For more than two decades, humans have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is able to focus more of its resources on deep space missions to the Moon and Mars.
      Get breaking news, images and features from the space station on the station blog, Instagram, Facebook, and X.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Julian Coltre / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      julian.n.coltre@nasa.gov / claire.a.o’shea@nasa.gov
      Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov
      Share
      Details
      Last Updated Mar 27, 2024 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Humans in Space ISS Research Missions View the full article
    • By NASA
      NASA astronaut and backup Soyuz MS-25 Flight Engineer Don Pettit poses for a crew portrait at the Gagarin Cosmonaut Training Center.NASA During his fourth mission to the International Space Station, NASA astronaut Don Pettit will serve as a flight engineer and member of the Expedition 71/72 crew. After blasting off to space, Pettit will conduct scientific investigations and technology demonstrations to help prepare crew for future space missions.
      Pettit will launch on the Roscosmos Soyuz MS-26 spacecraft in September 2024, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner. The trio will spend approximately six months aboard the orbital laboratory.
      NASA selected Pettit as an astronaut in 1996. A veteran of three spaceflights, he made integral advancements in technology and demonstrations for human exploration. He served as a science officer for Expedition 6 in 2003, operated the robotic arm for STS-126 space shuttle Endeavour in 2008, and served as a flight engineer for Expedition 30/31 in 2012. Pettit has logged 370 days in space and conducted two spacewalks totaling 13 hours and 17 minutes.
      The Expedition 6 crew launched on STS-113 space shuttle Endeavour expecting to return on STS-114 space shuttle Discovery after a two and a half month mission. Following the space shuttle Columbia accident that grounded the shuttle fleet, the crew returned on the Soyuz TMA-1 spacecraft after five and a half months, landing in Kazakhstan. On his next 16-day mission, STS-126, Pettit helped expand the living quarters of the space station and installed a regenerative life support system to reclaim potable water from urine. During Expedition 30/31, Pettit also captured the first commercial cargo spacecraft, the SpaceX Dragon, using the robotic arm.
      A native from Silverton, Oregon, Pettit holds a bachelor’s degree in chemical engineering from Oregon State University, Corvallis, and a doctorate in chemical engineering from the University of Arizona, Tucson. Prior to his career with NASA, Pettit worked as a staff scientist at the Los Alamos National Laboratory in New Mexico.
      For more than two decades, humans have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is able to focus more of its resources on deep space missions to the Moon and Mars.
      Get breaking news, images and features from the space station on the station blog, Instagram, Facebook, and X.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Julian Coltre / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      julian.n.coltre@nasa.gov / claire.a.o’shea@nasa.gov
      Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov
      View the full article
    • By NASA
      5 min read
      NASA to Launch Sounding Rockets into Moon’s Shadow During Solar Eclipse
      NASA will launch three sounding rockets during the total solar eclipse on April 8, 2024, to study how Earth’s upper atmosphere is affected when sunlight momentarily dims over a portion of the planet.
      The Atmospheric Perturbations around Eclipse Path (APEP) sounding rockets will launch from NASA’s Wallops Flight Facility in Virginia to study the disturbances in the ionosphere created when the Moon eclipses the Sun. The sounding rockets had been previously launched and successfully recovered from White Sands Test Facility in New Mexico, during the October 2023 annular solar eclipse. They have been refurbished with new instrumentation and will be relaunched in April 2024. The mission is led by Aroh Barjatya, a professor of engineering physics at Embry-Riddle Aeronautical University in Florida, where he directs the Space and Atmospheric Instrumentation Lab.
      This photo shows the three APEP sounding rockets and the support team after successful assembly. The team lead, Aroh Barjatya, is at the top center, standing next to the guardrails on the second floor. NASA/Berit Bland The sounding rockets will launch at three different times: 45 minutes before, during, and 45 minutes after the peak local eclipse. These intervals are important to collect data on how the Sun’s sudden disappearance affects the ionosphere, creating disturbances that have the potential to interfere with our communications.
      This conceptual animation is an example of what observers might expect to see during a total solar eclipse, like the one happening over the United States on April 8, 2024. NASA’s Scientific Visualization Studio. The ionosphere is a region of Earth’s atmosphere that is between 55 to 310 miles (90 to 500 kilometers) above the ground. “It’s an electrified region that reflects and refracts radio signals, and also impacts satellite communications as the signals pass through,” said Barjatya. “Understanding the ionosphere and developing models to help us predict disturbances is crucial to making sure our increasingly communication-dependent world operates smoothly.”
      The ionosphere forms the boundary between Earth’s lower atmosphere – where we live and breathe – and the vacuum of space. It is made up of a sea of particles that become ionized, or electrically charged, from the Sun’s energy, or solar radiation. When night falls, the ionosphere thins out as previously ionized particles relax and recombine back into neutral particles. However, Earth’s terrestrial weather and space weather can impact these particles, making it a dynamic region and difficult to know what the ionosphere will be like at a given time. 
      An animation depicts changes in the ionosphere over a 24-hour period. The red and yellow swaths represent high-density ionized particles during the day. The purple dots represent neutral, relaxed particles at night. NASA/Krystofer Kim It’s often difficult to study short-term changes in the ionosphere during an eclipse with satellites because they may not be at the right place or time to cross the eclipse path. Since the exact date and times of the total solar eclipse are known, NASA can launch targeted sounding rockets to study the effects of the eclipse at the right time and at all altitudes of the ionosphere.
      As the eclipse shadow races through the atmosphere, it creates a rapid, localized sunset that triggers large-scale atmospheric waves and small-scale disturbances, or perturbations. These perturbations affect different radio communication frequencies. Gathering the data on these perturbations will help scientists validate and improve current models that help predict potential disturbances to our communications, especially high frequency communication. 
      The animation depicts the waves created by ionized particles during the 2017 total solar eclipse. MIT Haystack Observatory/Shun-rong Zhang. Zhang, S.-R., Erickson, P. J., Goncharenko, L. P., Coster, A. J., Rideout, W. & Vierinen, J. (2017). Ionospheric Bow Waves and Perturbations Induced by the 21 August 2017 Solar Eclipse. Geophysical Research Letters, 44(24), 12,067-12,073. https://doi.org/10.1002/2017GL076054. The APEP rockets are expected to reach a maximum altitude of 260 miles (420 kilometers). Each rocket will measure charged and neutral particle density and surrounding electric and magnetic fields. “Each rocket will eject four secondary instruments the size of a two-liter soda bottle that also measure the same data points, so it’s similar to results from fifteen rockets, while only launching three,” explained Barjatya. Three secondary instruments on each rocket were built by Embry-Riddle, and the fourth one was built at Dartmouth College in New Hampshire.
      In addition to the rockets, several teams across the U.S. will also be taking measurements of the ionosphere by various means. A team of students from Embry-Riddle will deploy a series of high-altitude balloons. Co-investigators from the Massachusetts Institute of Technology’s Haystack Observatory in Massachusetts, and the Air Force Research Laboratory in New Mexico, will operate a variety of ground-based radars taking measurements. Using this data, a team of scientists from Embry-Riddle and Johns Hopkins University Applied Physics Laboratory are refining existing models. Together, these various investigations will help provide the puzzle pieces needed to see the bigger picture of ionospheric dynamics.
      A sounding rocket is able to carry science instruments between 30 and 300 miles above Earth’s surface. These altitudes are typically too high for science balloons and too low for satellites to access safely, making sounding rockets the only platforms that can carry out direct measurements in these regions. NASA’s Goddard Space Flight Center When the APEP sounding rockets launched during the 2023 annular solar eclipse, scientists saw a sharp reduction in the density of charged particles as the annular eclipse shadow passed over the atmosphere. “We saw the perturbations capable of affecting radio communications in the second and third rockets, but not during the first rocket that was before peak local eclipse” said Barjatya. “We are super excited to relaunch them during the total eclipse, to see if the perturbations start at the same altitude and if their magnitude and scale remain the same.”
      The next total solar eclipse over the contiguous U.S. is not until 2044, so these experiments are a rare opportunity for scientists to collect crucial data.
      The APEP launches will be live streamed via NASA’s Wallops’ official YouTube page and featured in NASA’s official broadcast of the total solar eclipse. The public can also watch the launches in person from 1-4 p.m. at the NASA Wallops Flight Facility Visitor Center.
      By Desiree Apodaca
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Mar 25, 2024 Related Terms
      2024 Solar Eclipse Eclipses Goddard Space Flight Center Heliophysics Heliophysics Division Heliophysics Research Program Ionosphere Science & Research Science Mission Directorate Skywatching Solar Eclipses Sounding Rockets Program Wallops Flight Facility Explore More
      3 min read Hubble Sees New Star Proclaiming Presence with Cosmic Lightshow


      Article


      6 hours ago
      3 min read International Space Station welcomes biological and physical science experiments


      Article


      3 days ago
      2 min read Hubble Spots the Spider Galaxy


      Article


      3 days ago
      Keep Exploring Discover Related Topics
      2024 Total Eclipse



      Safety



      2024 Total Solar Eclipse Broadcast



      Eclipse 2024 Science


      View the full article
    • By European Space Agency
      A fresh, icy crust hides a deep, enigmatic ocean. Plumes of water burst through cracks in the ice, shooting into space. An intrepid lander collects samples and analyses them for hints of life.
      ESA has started to turn this scene into a reality, devising a mission to investigate an ocean world around either Jupiter or Saturn. But which moon should we choose? What should the mission do exactly? A team of expert scientists has delivered their findings.
      View the full article
    • By European Space Agency
      A fresh, icy crust hides a deep, enigmatic ocean. Plumes of water burst through cracks in the ice, shooting into space. An intrepid lander collects samples and analyses them for hints of life.
      ESA has started to turn this scene into a reality, devising a mission to investigate an ocean world around either Jupiter or Saturn. But which moon should we choose? What should the mission do exactly? A team of expert scientists has delivered their findings.
      View the full article
  • Check out these Videos

×
×
  • Create New...