Jump to content

James Webb Telescope Hit By Meteoroid! What's the Damage?


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 Min Read Investigating the Origins of the Crab Nebula With NASA’s Webb
      This image by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) shows different structural details of the Crab Nebula. New data revises our view of this unusual supernova explosion.
      A team of scientists used NASA’s James Webb Space Telescope to parse the composition of the Crab Nebula, a supernova remnant located 6,500 light-years away in the constellation Taurus. With the telescope’s MIRI (Mid-Infrared Instrument) and NIRCam (Near-Infrared Camera), the team gathered data that is helping to clarify the Crab Nebula’s history.
      The Crab Nebula is the result of a core-collapse supernova from the death of a massive star. The supernova explosion itself was seen on Earth in 1054 CE and was bright enough to view during the daytime. The much fainter remnant observed today is an expanding shell of gas and dust, and outflowing wind powered by a pulsar, a rapidly spinning and highly magnetized neutron star.
      The Crab Nebula is also highly unusual. Its atypical composition and very low explosion energy previously have been explained by an electron-capture supernova — a rare type of explosion that arises from a star with a less-evolved core made of oxygen, neon, and magnesium, rather than a more typical iron core.
      “Now the Webb data widen the possible interpretations,” said Tea Temim, lead author of the study at Princeton University in New Jersey. “The composition of the gas no longer requires an electron-capture explosion, but could also be explained by a weak iron core-collapse supernova.”
      Image A: Crab Nebula (NIRCam and MIRI)
      This image by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) shows different structural details of the Crab Nebula. The supernova remnant is comprised of several different components, including doubly ionized sulfur (represented in green), warm dust (magenta), and synchrotron emission (blue). Yellow-white mottled filaments within the Crab’s interior represent areas where dust and doubly ionized sulfur coincide. The observations were taken as part of General Observer program 1714. Studying the Present to Understand the Past
      Past research efforts have calculated the total kinetic energy of the explosion based on the quantity and velocities of the present-day ejecta. Astronomers deduced that the nature of the explosion was one of relatively low energy (less than one-tenth that of a normal supernova), and the progenitor star’s mass was in the range of eight to 10 solar masses — teetering on the thin line between stars that experience a violent supernova death and those that do not.
      However, inconsistencies exist between the electron-capture supernova theory and observations of the Crab, particularly the observed rapid motion of the pulsar. In recent years, astronomers have also improved their understanding of iron core-collapse supernovae and now think that this type can also produce low-energy explosions, providing that the stellar mass is adequately low.
      Webb Measurements Reconcile Historic Results
      To lower the level of uncertainty surrounding the Crab’s progenitor star and nature of the explosion, the team led by Temim used Webb’s spectroscopic capabilities to hone in on two areas located within the Crab’s inner filaments.
      Theories predict that because of the different chemical composition of the core in an electron-capture supernova, the nickel to iron (Ni/Fe) abundance ratio should be much higher than the ratio measured in our Sun (which contains these elements from previous generations of stars). Studies in the late 1980s and early 1990s measured the Ni/Fe ratio within the Crab using optical and near-infrared data and noted a high Ni/Fe abundance ratio that seemed to favor the electron-capture supernova scenario.
      The Webb telescope, with its sensitive infrared capabilities, is now advancing Crab Nebula research. The team used MIRI’s spectroscopic abilities to measure the nickel and iron emission lines, resulting in a more reliable estimate of the Ni/Fe abundance ratio. They found that the ratio was still elevated compared to the Sun, but only modestly and much lower in comparison to prior estimates.
      The revised values are consistent with electron-capture, but do not rule out an iron core-collapse explosion from a similarly low-mass star. (Higher-energy explosions from higher-mass stars are expected to produce ratios closer to solar abundances.) Further observational and theoretical work will be needed to distinguish between these two possibilities.
      “At present, the spectral data from Webb covers two small regions of the Crab, so it’s important to study much more of the remnant and identify any spatial variations,” said Martin Laming of the Naval Research Laboratory in Washington and a co-author of the paper. “It would be interesting to see if we could identify emission lines from other elements, like cobalt or germanium.”
      Video: Crab Nebula Deconstructed

      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      This video shows the different major components that compose the Crab Nebula as observed by the James Webb Space Telescope. Despite decades of study, this supernova remnant continues to puzzle astronomers as they seek to understand what kind of progenitor star and explosion produced this dynamic environment. Image- NASA, ESA, CSA, STScI, Tea Temim (Princeton University) Video- Joseph DePasquale (STScI) Mapping the Crab’s Current State
      Besides pulling spectral data from two small regions of the Crab Nebula’s interior to measure the abundance ratio, the telescope also observed the remnant’s broader environment to understand details of the synchrotron emission and the dust distribution.
      The images and data collected by MIRI enabled the team to isolate the dust emission within the Crab and map it in high resolution for the first time. By mapping the warm dust emission with Webb, and even combining it with the Herschel Space Observatory’s data on cooler dust grains, the team created a well-rounded picture of the dust distribution: The outermost filaments contain relatively warmer dust, while cooler grains are prevalent near the center.
      “Where dust is seen in the Crab is interesting because it differs from other supernova remnants, like Cassiopeia A and Supernova 1987A,” said Nathan Smith of the Steward Observatory at the University of Arizona and a co-author of the paper. “In those objects, the dust is in the very center. In the Crab, the dust is found in the dense filaments of the outer shell. The Crab Nebula lives up to a tradition in astronomy: The nearest, brightest, and best-studied objects tend to be bizarre.”
      These findings have been accepted for publication in The Astrophysical Journal Letters.
      The observations were taken as part of General Observer program 1714.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      These findings have been accepted for publication in The Astrophysical Journal Letters.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Abigail Major – amajor@stsci.edu / Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Infographic: Massive Stars: Engines of Creation
      Articles: Explore Other Webb Supernova Articles
      3D visualization video : “Crab Nebula: The Multiwavelength Structure of a Pulsar Wind Nebula”
      Sonification: Multiwavelength image of the Crab Nebula
      Explore More: Crab Nebula resources from NASA’s Universe of Learning
      More Webb News
      More Webb Images
      Webb Mission Page
      Related For Kids
      What is a supernova?
      Interactive: Explore the Crab Nebula in multiple wavelengths
      Activity: Create a stellar life cycle bookmark and bracelet
      Activity: Flipbook resource for stellar evolution
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Qué es una  supernova?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Stars



      Universe


      Share








      Details
      Last Updated Jun 17, 2024 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Crab Nebula Goddard Space Flight Center James Webb Space Telescope (JWST) Nebulae Neutron Stars Pulsars Science & Research Stars Supernovae The Universe View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The WL 20 group of stars is located in the Rho Ophiuchi star-forming region, imaged here by NASA’s now-retired Spitzer Space Telescope. Located near the constellations Scorpius and Ophiuchus, the region is about 407 light-years from Earth. NASA/JPL-Caltech Managed by NASA’s Jet Propulsion Laboratory through launch, Webb’s Mid-Infrared Instrument also revealed jets of gas flowing into space from the twin stars.
      Scientists recently got a big surprise from NASA’s James Webb Space Telescope when they turned the observatory toward a group of young stars called WL 20. The region has been studied since the 1970s with at least five telescopes, but it took Webb’s unprecedented resolution and specialized instruments to reveal that what researchers long thought was one of the stars, WL 20S, is actually a pair that formed about 2 million to 4 million years ago.
      The discovery was made using Webb’s Mid-Infrared Instrument (MIRI) and was presented at the 244th meeting of the American Astronomical Society on June 12. MIRI also found that the twins have matching jets of gas streaming into space from their north and south poles.
      “Our jaws dropped,” said astronomer Mary Barsony, lead author of a new paper describing the results. “After studying this source for decades, we thought we knew it pretty well. But without MIRI we would not have known this was two stars or that these jets existed. That’s really astonishing. It’s like having brand new eyes.”
      This artist’s concept shows two young stars nearing the end of their formation. Encircling the stars are disks of leftover gas and dust from which planets may form. Jets of gas shoot away from the stars’ north and south poles. The team got another surprise when additional observations by the Atacama Large Millimeter/submillimeter Array (ALMA), a group of more than 60 radio antennas in Chile, revealed that disks of dust and gas encircle both stars. Based on the stars’ age, it’s possible that planets are forming in those disks.
      The combined results indicate that the twin stars are nearing the end of this early period of their lives, which means scientists will have the opportunity to learn more about how the stars transition from youth into adulthood.
      “The power of these two telescopes together is really incredible,” said Mike Ressler, project scientist for MIRI at NASA’s Jet Propulsion Laboratory and co-author of the new study. “If we hadn’t seen that these were two stars, the ALMA results might have just looked like a single disk with a gap in the middle. Instead, we have new data about two stars that are clearly at a critical point in their lives, when the processes that formed them are petering out.”
      This image of the WL 20 star group combines data from the Atacama Large Millimeter/submillimeter Array and the Mid-Infrared Instrument on NASA’s Webb telescope. Gas jets emanating from the poles of twin stars appear blue and green; disks of dust and gas surrounding the stars are pink.U.S. NSF; NSF NRAO; ALMA; NASA/JPL-Caltech; B. Saxton Stellar Jets
      WL 20 resides in a much larger, well-studied star-forming region of the Milky Way galaxy called Rho Ophiuchi, a massive cloud of gas and dust about 400 light-years from Earth. In fact, WL 20 is hidden behind thick clouds of gas and dust that block most of the visible light (wavelengths that the human eye can detect) from the stars there. Webb detects slightly longer wavelengths, called infrared, that can pass through those layers. MIRI detects the longest infrared wavelengths of any instrument on Webb and is thus well equipped for peering into obscured star-forming regions like WL 20.
      Radio waves can often penetrate dust as well, though they may not reveal the same features as infrared light. The disks of gas and dust surrounding the two stars in WL 20S emit light in a range that astronomers call submillimeter; these, too, penetrate the surrounding gas clouds and were observed by ALMA.
      These four images show the WL 20 star system as seen by (from left) NASA’s Infrared Telescope Facility at the Mauna Kea Observatory, the Hale 5.0-meter telescope the Palomar Observatory, the Keck II telescope, and the NASA’s Webb telescope and the Atacama Large Millimeter/submillimeter Array. But scientists could easily have interpreted those observations as evidence of a single disk with a gap in it had MIRI not also observed the two stellar jets. The jets of gas are composed of ions, or individual atoms with some electrons stripped away that radiate in mid-infrared wavelengths but not at submillimeter wavelengths. Only an infrared instrument with spatial and spectral resolution like MIRI’s could see them.
      ALMA can also observe clouds of leftover formation material around young stars. Composed of whole molecules, like carbon monoxide, these clouds of gas and dust radiate light at these longer wavelengths. The absence of those clouds in the ALMA observations shows that the stars are beyond their initial formation phase.
      “It’s amazing that this region still has so much to teach us about the life cycle of stars,” said Ressler. “I’m thrilled to see what else Webb will reveal.”
      More About the Mission
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      MIRI was developed through a 50-50 partnership between NASA and ESA. A division of Caltech in Pasadena, California, JPL led the U.S. efforts for MIRI, and a multinational consortium of European astronomical institutes contributes for ESA. George Rieke with the University of Arizona is the MIRI science team lead. Gillian Wright is the MIRI European principal investigator.
      The MIRI cryocooler development was led and managed by JPL, in collaboration with Northrop Grumman in Redondo Beach, California, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      News Media Contact
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      2024-085
      Share
      Details
      Last Updated Jun 13, 2024 Related Terms
      James Webb Space Telescope (JWST) Astrophysics Exoplanets Jet Propulsion Laboratory Stars Explore More
      5 min read NASA’s Perseverance Fords an Ancient River to Reach Science Target
      Article 3 hours ago 4 min read Coming in Hot — NASA’s Chandra Checks Habitability of Exoplanets
      Article 1 day ago 6 min read NASA’s Roman Mission Gets Cosmic ‘Sneak Peek’ From Supercomputers
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      6 Min Read NASA’s Webb Opens New Window on Supernova Science
      The JADES Deep Field uses observations taken by NASA’s James Webb Space Telescope (JWST) as part of the JADES (JWST Advanced Deep Extragalactic Survey) program. A team of astronomers studying JADES data identified about 80 objects that changed in brightness over time. Most of these objects, known as transients, are the result of exploding stars or supernovae. See annotated image below. Peering deeply into the cosmos, NASA’s James Webb Space Telescope is giving scientists their first detailed glimpse of supernovae from a time when our universe was just a small fraction of its current age. A team using Webb data has identified 10 times more supernovae in the early universe than were previously known. A few of the newfound exploding stars are the most distant examples of their type, including those used to measure the universe’s expansion rate.
      “Webb is a supernova discovery machine,” said Christa DeCoursey, a third-year graduate student at the Steward Observatory and the University of Arizona in Tucson. “The sheer number of detections plus the great distances to these supernovae are the two most exciting outcomes from our survey.”
      DeCoursey presented these findings in a press conference at the 244th meeting of the American Astronomical Society in Madison, Wisconsin.
      Image A: Jades Deep Field Annotated
      The JADES Deep Field uses observations taken by NASA’s James Webb Space Telescope (JWST) as part of the JADES (JWST Advanced Deep Extragalactic Survey) program. A team of astronomers studying JADES data identified about 80 objects (circled in green) that changed in brightness over time. Most of these objects, known as transients, are the result of exploding stars or supernovae. Prior to this survey, only a handful of supernovae had been found above a redshift of 2, which corresponds to when the universe was only 3.3 billion years old — just 25% of its current age. The JADES sample contains many supernovae that exploded even further in the past, when the universe was less than 2 billion years old. It includes the farthest one ever spectroscopically confirmed, at a redshift of 3.6. Its progenitor star exploded when the universe was only 1.8 billion years old.
      ‘A Supernova Discovery Machine’
      To make these discoveries, the team analyzed imaging data obtained as part of the JWST Advanced Deep Extragalactic Survey (JADES) program. Webb is ideal for finding extremely distant supernovae because their light is stretched into longer wavelengths — a phenomenon known as cosmological redshift.
      Prior to Webb’s launch, only a handful of supernovae had been found above a redshift of 2, which corresponds to when the universe was only 3.3 billion years old — just 25% of its current age. The JADES sample contains many supernovae that exploded even further in the past, when the universe was less than 2 billion years old.
      Previously, researchers used NASA’s Hubble Space Telescope to view supernovae from when the universe was in the “young adult” stage. With JADES, scientists are seeing supernovae when the universe was in its “teens” or “pre-teens.” In the future, they hope to look back to the “toddler” or “infant” phase of the universe.
      To discover the supernovae, the team compared multiple images taken up to one year apart and looked for sources that disappeared or appeared in those images. These objects that vary in observed brightness over time are called transients, and supernovae are a type of transient. In all, the JADES Transient Survey Sample team uncovered about 80 supernovae in a patch of sky only about the thickness of a grain of rice held at arm’s length.
      “This is really our first sample of what the high-redshift universe looks like for transient science,” said teammate Justin Pierel, a NASA Einstein Fellow at the Space Telescope Science Institute (STScI) in Baltimore, Maryland. “We are trying to identify whether distant supernovae are fundamentally different from or very much like what we see in the nearby universe.”
      Pierel and other STScI researchers provided expert analysis to determine which transients were actually supernovae and which were not, because often they looked very similar.
      The team identified a number of high-redshift supernovae, including the farthest one ever spectroscopically confirmed, at a redshift of 3.6. Its progenitor star exploded when the universe was only 1.8 billion years old. It is a so-called core-collapse supernova, an explosion of a massive star. 
      Image B: Jades Deep Field Transients (NIRCam)
      This mosaic displays three of about 80 transients, or objects of changing brightness, identified in data from the JADES (JWST Advanced Deep Extragalactic Survey) program. Most of the transients are the result of exploding stars or supernovae. By comparing images taken in 2022 and 2023, astronomers could locate supernovae that recently exploded (like the examples shown in the first two columns), or supernovae that had already exploded and whose light was fading away (third column). The age of each supernova can be determined from its redshift (designated by ‘z’). The light of the most distant supernova, at a redshift of 3.8, originated when the universe was only 1.7 billion years old. A redshift of 2.845 corresponds to a time 2.3 billion years after the big bang. The closest example, at a redshift of 0.655, shows light that left its galaxy about 6 billion years ago, when the universe was just over half its current age.
      Uncovering Distant Type Ia Supernovae
      Of particular interest to astrophysicists are Type Ia supernovae. These exploding stars are so predictably bright that they are used to measure far-off cosmic distances and help scientists to calculate the universe’s expansion rate. The team identified at least one Type Ia supernova at a redshift of 2.9. The light from this explosion began traveling to us 11.5 billion years ago when the universe was just 2.3 billion years old. The previous distance record for a spectroscopically confirmed Type Ia supernova was a redshift of 1.95, when the universe was 3.4 billion years old.
      Scientists are eager to analyze Type Ia supernovae at high redshifts to see if they all have the same intrinsic brightness, regardless of distance. This is critically important, because if their brightness varies with redshift, they would not be reliable markers for measuring the expansion rate of the universe.
      Pierel analyzed this Type Ia supernova found at redshift 2.9 to determine if its intrinsic brightness was different than expected. While this is just the first such object, the results indicate no evidence that Type Ia brightness changes with redshift. More data is needed, but for now, Type Ia supernova-based theories about the universe’s expansion rate and its ultimate fate remain intact. Pierel also presented his findings at the 244th meeting of the American Astronomical Society.
      Looking Toward the Future
      The early universe was a very different place with extreme environments. Scientists expect to see ancient supernovae that come from stars that contain far fewer heavy chemical elements than stars like our Sun. Comparing these supernovae with those in the local universe will help astrophysicists understand star formation and supernova explosion mechanisms at these early times.
      “We’re essentially opening a new window on the transient universe,” said STScI Fellow Matthew Siebert, who is leading the spectroscopic analysis of the JADES supernovae. “Historically, whenever we’ve done that, we’ve found extremely exciting things — things that we didn’t expect.”
      “Because Webb is so sensitive, it’s finding supernovae and other transients almost everywhere it’s pointed,” said JADES team member Eiichi Egami, a research professor at the University of Arizona in Tucson. “This is the first significant step toward more extensive surveys of supernovae with Webb.”
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency). 
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Ann Jenkins – jenkins@stsci.edu / Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Animation: Type 1a Supernovae Animations
      Infographic: Massive Stars: Engines of Creation
      Articles: Explore Other Supernova Articles
      More Webb News
      More Webb Images
      Webb Mission Page
      Related For Kids
      What is a supernova?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Qué es una  supernova?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Stars



      Universe


      Share








      Details
      Last Updated Jun 10, 2024 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Galaxies Galaxies, Stars, & Black Holes James Webb Space Telescope (JWST) Missions Origin & Evolution of the Universe Science & Research The Universe View the full article
    • By NASA
      5 Min Read Webb Finds Plethora of Carbon Molecules Around Young Star
      This is an artist’s impression of a young star surrounded by a disk of gas and dust. An international team of astronomers has used NASA’s James Webb Space Telescope to study the disk of gas and dust around a young, very low-mass star. The results reveal the largest number of carbon-containing molecules seen to date in such a disk. These findings have implications for the potential composition of any planets that might form around this star.
      Rocky planets are more likely than gas giants to form around low-mass stars, making them the most common planets around the most common stars in our galaxy. Little is known about the chemistry of such worlds, which may be similar to or very different from Earth. By studying the disks from which such planets form, astronomers hope to better understand the planet formation process and the compositions of the resulting planets.
      Planet-forming disks around very low-mass stars are difficult to study because they are smaller and fainter than disks around high-mass stars. A program called the MIRI (Mid-Infrared Instrument) Mid-INfrared Disk Survey (MINDS) aims to use Webb’s unique capabilities to build a bridge between the chemical inventory of disks and the properties of exoplanets.
      Image A: Artist’s Concept of Protoplanetary Disk
      This is an artist’s impression of a young star surrounded by a disk of gas and dust. An international team of astronomers has used NASA’s James Webb Space Telescope to study the disk around a young and very low-mass star known as ISO-ChaI 147. The results reveal the richest hydrocarbon chemistry seen to date in a protoplanetary disk. “Webb has better sensitivity and spectral resolution than previous infrared space telescopes,” explained lead author Aditya Arabhavi of the University of Groningen in the Netherlands. “These observations are not possible from Earth, because the emissions from the disk are blocked by our atmosphere.”
      In a new study, this team explored the region around a very low-mass star known as ISO-ChaI 147, a 1 to 2 million-year-old star that weighs just 0.11 times as much as the Sun. The spectrum revealed by Webb’s MIRI shows the richest hydrocarbon chemistry seen to date in a protoplanetary disk – a total of 13 different carbon-bearing molecules. The team’s findings include the first detection of ethane (C2H6) outside of our solar system, as well as ethylene (C2H4), propyne (C3H4), and the methyl radical CH3.
      “These molecules have already been detected in our solar system, like in comets such as 67P/Churyumov–Gerasimenko and C/2014 Q2 (Lovejoy),” added Arabhavi. “Webb allowed us to understand that these hydrocarbon molecules are not just diverse but also abundant. It is amazing that we can now see the dance of these molecules in the planetary cradles. It is a very different planet-forming environment than we usually think of.”
      Image B: Protoplanetary disk of ISO-ChaI 147 (MIRI emission spectrum)
      The team indicates that these results have large implications for the chemistry of the inner disk and the planets that might form there. Since Webb revealed the gas in the disk is so rich in carbon, there is likely little carbon left in the solid materials that planets would form from. As a result, the planets that might form there may ultimately be carbon-poor. (Earth itself is considered carbon-poor.)
      “This is profoundly different from the composition we see in disks around solar-type stars, where oxygen bearing molecules like water and carbon dioxide dominate,” added team member Inga Kamp, also of the University of Groningen. “This object establishes that these are a unique class of objects.”
      “It’s incredible that we can detect and quantify the amount of molecules that we know well on Earth, such as benzene, in an object that is more than 600 light-years away,” added team member Agnés Perrin of Centre National de la Recherche Scientifique in France.
      Next, the science team intends to expand their study to a larger sample of such disks around very low-mass stars to develop their understanding of how common or exotic such carbon-rich terrestrial planet-forming regions are. “The expansion of our study will also allow us to better understand how these molecules can form,” explained team member and principal investigator of the MINDS program, Thomas Henning, of the Max-Planck-Institute for Astronomy in Germany. “Several features in the Webb data are also still unidentified, so more spectroscopy is required to fully interpret our observations.”
      This work also highlights the crucial need for scientists to collaborate across disciplines. The team notes that these results and the accompanying data can contribute towards other fields including theoretical physics, chemistry, and astrochemistry, to interpret the spectra and to investigate new features in this wavelength range.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download full resolution images for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Infographic: Destiny of Dust
      Infographic: Recipe for Planet Formation
      Animation: Exploring Star and Planet Formation
      Video: Scientists’ Perspective: Science Snippets
      More Webb News – https://science.nasa.gov/mission/webb/latestnews/
      More Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/
      Webb Mission Page – https://science.nasa.gov/mission/webb/
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Exoplanets



      Stars



      Universe


      Share








      Details
      Last Updated Jun 06, 2024 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Exoplanet Science Exoplanets James Webb Space Telescope (JWST) Missions Planetary Nebulae Planetary Science Planets Science & Research Studying Exoplanets The Universe View the full article
    • By NASA
      3 min read
      NASA to Change How It Points Hubble Space Telescope
      This image of NASA’s Hubble Space Telescope was taken on May 19, 2009 after deployment during Servicing Mission 4. NASA After completing a series of tests and carefully considering the options, NASA announced Tuesday work is underway to transition its Hubble Space Telescope to operate using only one gyroscope (gyro). While the telescope went into safe mode May 24, where it now remains until work is complete, this change will enable Hubble to continue exploring the secrets of the universe through this decade and into the next, with the majority of its observations unaffected.
      Of the six gyros currently on the spacecraft, three remain active. They measure the telescope’s slew rates and are part of the system that determines and controls the direction the telescope is pointed. Over the past six months, one particular gyro has increasingly returned faulty readings, causing the spacecraft to enter safe mode multiple times and suspending science observations while the telescope awaits new instructions from the ground.
      This one gyro is experiencing “saturation,” where it indicates the maximum slew rate value possible regardless of how quickly the spacecraft is slewing. Although the team has repeatedly been able to reset the gyro’s electronics to return normal readings, the results have only been temporary before the problem reappears as it did again in late May.
      To return to consistent science operations, NASA is transitioning the spacecraft to a new operational mode it had long considered: Hubble will operate with only one gyro, while keeping another gyro available for future use. The spacecraft had six new gyros installed during the fifth and final space shuttle servicing mission in 2009. To date, three of those gyros remain operational, including the gyro currently experiencing problems, which the team will continue to monitor. Hubble uses three gyros to maximize efficiency but can continue to make science observations with only one gyro. NASA first developed this plan more than 20 years ago, as the best operational mode to prolong Hubble’s life and allow it to successfully provide consistent science with fewer than three working gyros. Hubble previously operated in two-gyro mode, which is negligibly different from one-gyro mode, from 2005-2009. One-gyro operations were demonstrated in 2008 for a short time with no impact to science observation quality.
      While continuing to make science observations in one-gyro mode, there are some expected minor limitations. The observatory will need more time to slew and lock onto a science target and won’t have as much flexibility as to where it can observe at any given time. It also will not be able to track moving objects closer than Mars, though these are rare targets for Hubble.
      The transition involves reconfiguring the spacecraft and ground system as well as assessing the impact to future planned observations. The team expects to resume science operations again by mid-June. Once in one-gyro mode, NASA anticipates Hubble will continue making new cosmic discoveries alongside other observatories, such as the agency’s James Webb Space Telescope and future Nancy Grace Roman Space Telescope, for years to come.
      Launched in 1990, Hubble has more than doubled its expected design lifetime, and has been observing the universe for more than three decades, recently celebrating its 34th anniversary. Read more about some of Hubble’s greatest scientific discoveries.
      Learn more about NASA’s Hubble Space Telescope on the agency’s website:
      https://www.nasa.gov/hubble
      Resources

      Download the image above


      Hubble Pointing and Control


      Operating Hubble with Only One Gyroscope


      Hubble Science Highlights


      Hubble Images

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Jun 04, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Galaxies Stories



      Stars Stories



      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…

      View the full article
  • Check out these Videos

×
×
  • Create New...