Jump to content

Views Of The Moon - Lunar Images Taken From Orbit by Nasa Lunar Reconnaissance Orbiter (LRO)


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Kevin O’Brien NASA’s SLS (Space Launch System) rocket in the Block 1B cargo configuration will launch for the first time beginning with Artemis IV. This upgraded and more powerful SLS rocket will enable SLS to send over 38 metric tons (83,700 lbs.) to the Moon, including NASA’s Orion spacecraft and its crew, along with heavy payloads for more ambitious missions to deep space. While every SLS rocket retains the core stage, booster, and RS-25 engine designs, the Block 1B features a more powerful exploration upper stage with four RL10 engines for in-space propulsion and a new universal stage adapter for greater cargo capability and volume. 
      As NASA and its Artemis partners aim to explore the Moon for scientific discovery and in preparation for future missions to Mars, the evolved Block 1B design of the SLS rocket will be key in launching Artemis astronauts, modules or other exploration spacecraft for long-term exploration, and key components of  Gateway lunar space station.
      View the full article
    • By NASA
      A Satellite for Optimal Control and Imaging (SOC-i) CubeSat awaits integration at Firefly’s Payload Processing Facility at Vandenberg Space Force Base, California on Thursday, June 6, 2024. SOC-i, along with several other CubeSats, will launch to space on an Alpha rocket during NASA’s Educational Launch of Nanosatellites (ELaNa) 43 mission as part of the agency’s CubeSat Launch Initiative and Firefly’s Venture-Class Launch Services Demonstration 2 contract.NASA NASA is readying for the launch of several small satellites to space, built with the help of students, educators, and researchers from across the country, as part of the agency’s CubeSat Launch Initiative.
      The ELaNa 43 (Educational Launch of Nanosatellites 43) mission includes eight CubeSats flying on Firefly Aerospace’s Alpha rocket for its “Noise of Summer” launch from Space Launch Complex-2 at Vandenberg Space Force Base, California. The 30-minute launch window will open at 9 p.m. PDT Wednesday, June 26 (12 a.m. EDT Thursday, June 27).
      NASA’s CubeSat Launch Initiative (CSLI) is an ongoing partnership between the agency, educational institutions, and nonprofits, providing a path to space for educational small satellite missions. For the ELaNa 43 mission, each satellite is stored in a CubeSat dispenser on the Firefly rocket and deployed once it reaches sun-synchronous or nearly polar orbit around Earth.
      CubeSats are built using standardized units, with one unit, or 1U, measuring about 10 centimeters in length, width, and height. This standardization in size and form allows universities and other researchers to develop cost-effective science investigations and technology demonstrations.
      Read more about the small satellites launching on ELaNa 43:
      CatSat – University of Arizona, Tucson
      CatSat, a 6U CubeSat with a deployable antenna inside a Mylar balloon, will test high-speed communications. Once the CatSat reaches orbit, it will inflate to transmit high-definition Earth photos to ground stations at 50 megabits per second, more than five times faster than typical home internet speeds.
      The CatSat design inspiration came to Chris Walker after covering a pot of pudding with plastic wrap. The CatSat principal investigator and professor of Astronomy at University of Arizona noticed the image of an overhanging light bulb created by reflections off the concave plastic wrap on the pot.
      “This observation eventually led to the Large Balloon Reflector, an inflatable technology that creates large collecting apertures that weigh a fraction of today’s deployable antennas,” said Walker. The Large Balloon Reflector was an early-stage study developed through NASA’s Innovative Advanced Concepts program.
      KUbeSat-1 – University of Kansas, Lawrence
      The KUbeSat-1, a 3U CubeSat, will use a new method to measure the energy and type of primary cosmic rays hitting the Earth, which is traditionally done on Earth. The second payload, the High-Altitude Calibration will measure very high frequency signals generated by cosmic interactions with the atmosphere. KUbeSat-1 is Kansas’ first small satellite to launch under NASA’s CSLI.
      MESAT-1 – University of Maine, Orono
      MESAT-1, a 3U CubeSat, will study local temperatures across city and rural areas to determine phytoplankton concentration in bodies of water to help predict algal blooms.  MESAT-1 is Maine’s first small satellite to launch under NASA’s CSLI.
      R5-S4, R5-S2-2.0 ­­­­­- NASA’s Johnson Space Center
      R5-S4 and R5-S2-2.0, both 6U CubeSats, will be the first R5 spacecraft launched to orbit to test a new, lean spacecraft build. The team will monitor how each part of the spacecraft performs, including the computer, software, radio, propulsion system, sensors, and cameras in low Earth orbit.
      NASA and Firefly Aerospace engineers review the integration plan for the agency’s CubeSat R5 Spacecraft 4 (R5-S4) at Firefly Aerospace’s Payload Processing Facility at Vandenberg Space Force Base, California on Wednesday, April 24, 2024.NASA/Jacob Nunez-Kearny “In the near term, R5 hopes to demonstrate new processes that allows for faster and cheaper development of high-performance CubeSats,” said Sam Pedrotty, R5 project manager at NASA’s Johnson Space Center in Houston. “The cost and schedule improvements will allow R5 to provide higher-risk ride options to low-Technology Readiness Levels payloads so more can be demonstrated on-orbit.”
      Serenity – Teachers in Space
      Serenity, a 3U CubeSat equipped with data sensors and a camera, will communicate with students on Earth through amateur radio signals and send back images. Teachers in Space launches satellites as educational experiments to stimulate interest in space science, technology, engineering, and math among students in North America.
      SOC-i – University of Washington, Seattle
      Satellite for Optimal Control and Imaging (SOC-i), a 2U CubeSat, is a technology demonstration mission of attitude control technology used to maintain its orientation in relation to the Earth, Sun, or other body. This mission will test an algorithm to support autonomous operations with constrained attitude guidance maneuvers computed in real-time aboard the spacecraft. SOC-i will autonomously rotate its camera to capture images.
      TechEdSat-11 (TES-11) – NASA’s Ames Research Center, California’s Silicon Valley
      TES-11, a 6U CubeSat, is a collaborative effort between NASA researchers and students to evaluate technologies for use in small satellites. It’s part of ongoing experiments to evaluate new technologies in communications, a radiation sensor suite, and experimental solar panels, as well as to find ways to reduce the time to de-orbit.
      NASA awarded Firefly Aerospace a fixed-price contract to fly small satellites to space under a Venture-Class Launch Services Demonstration 2 contract in 2020. NASA certified Firefly Aerospace’s Alpha rocket as a Category 1 in May, which authorized its use during missions with high risk tolerance.
      NASA’s Launch Services Program is responsible for launching rockets delivering spacecraft that observe Earth, visit other planets, and explore the universe.
      Follow NASA’s small satellite missions blog for launch updates.
      View the full article
    • By European Space Agency
      Week in images: 17-21 June 2024

      View the full article
    • By NASA
      With the dress rehearsal completed during Apollo 10 in May 1969, only a few weeks remained until Apollo 11, the actual Moon landing mission to meet President Kennedy’s goal set in 1961. Apollo 11 astronauts Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin and their backups James A. Lovell, William A. Anders, and Fred W. Haise entered the final phase of their training, rehearsing their mission in simulators and practicing for the lunar surface activities. Teams in Mission Control supported the simulations. A successful countdown demonstration cleared the way to start the actual countdown leading to launch. In the Pacific Ocean, U.S. Navy and NASA teams prepared for the recovery of the astronauts returning from the Moon, and for their postflight quarantine.
      Apollo 10
      After returning from their successful Moon landing dress rehearsal mission on May 26, 1969, Apollo 10 astronauts Thomas P. Stafford, John W. Young, and Eugene A. Cernan passed on their knowledge and lessons learned to the Apollo 11 Moon landing crew during postflight debriefs. On June 8, they accepted Emmy Awards on behalf of all Apollo crews for their television broadcasts from space, with special recognition for Apollo 10’s first use of color TV in space. On June 19, Stafford, Young, and Cernan returned to NASA’s Kennedy Space Center (KSC) in Florida to thank the employees there for getting them safely into orbit. On June 30, President Richard M. Nixon hosted them and their wives at a White House black tie dinner in their honor.

      Left: Apollo 10 astronauts debrief their mission with the Apollo 11 astronauts. Middle: Apollo 10 astronauts John W. Young, left, Eugene A. Cernan, and Thomas P. Stafford hold their Emmy Awards. Right: At NASA’s Kennedy Space Center (KSC) in Florida, Stafford, left, Young, and Cernan hold photographs of their launch presented to them by KSC Launch Director Rocco A. Petrone.

      Apollo 10 astronauts Thomas P. Stafford, left, John W. Young, and Eugene A. Cernan wave to employees as they ride in a convertible through NASA’s Kennedy Space Center in Florida.
      Apollo 11

      The document from NASA’s Office of Manned Space Flight stating Apollo 11’s primary objective.
      On June 26, Samuel C. Phillips, Apollo Program Director, and George E. Mueller, Associate Administrator for Manned Space Flight at NASA Headquarters in Washington, D.C., signed the directive stating Apollo 11’s primary objective: perform a manned lunar landing and return. The focus of the crew’s training, and all the other preparatory activities happening across the agency, aimed at accomplishing that seemingly simple, yet in truth extremely complex and never before accomplished, task.

      Left: Apollo 11 astronauts Neil A. Armstrong, left, and Edwin E. “Buzz” Aldrin in the Lunar Module simulator at NASA’s Kennedy Space Center (KSC) in Florida. Right: Apollo 11 astronaut Michael Collins in KSC’s Command Module simulator.

      Apollo 11 Flight Directors Eugene F. Kranz, left, Glynn S. Lunney, Clifford E. Charlesworth, Milton L. Windler, and Gerald D. Griffin pose in Mission Control.
      The final weeks leading up to the launch of their historic mission proved quite busy for Apollo 11 astronauts Armstrong, Collins, and Aldrin and their backups Lovell, Anders, and Haise, as well as the ground teams preparing their rocket and spacecraft for flight. To train for the different phases of their mission, the astronauts conducted many sessions in Command Module (CM) and Lunar Module (LM) simulators at both the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, and at KSC. For many of these sessions, teams of operators in MSC’s Mission Control monitored their activities as they would during the actual mission. Flight Directors Eugene F. Kranz, left, Glynn S. Lunney, Clifford E. Charlesworth, Milton L. Windler, and Gerald D. Griffin led the Mission Control teams.

      Apollo 11 astronauts Neil A. Armstrong, left, and Edwin E. “Buzz” Aldrin practice their lunar surface activities at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, left, and at NASA’s Kennedy Space Center in Florida.
      Apollo 11 would conduct the first spacewalk on another celestial body and only the second spacewalk of the Apollo program. At training facilities at MSC and KSC, Armstrong and Aldrin practiced setting up a television camera that would relay their activities back to Earth during the 2.5-hour excursion, deploying the three science experiments, and collecting rock and regolith samples for return to Earth.

      Left: Apollo 11 Commander Neil A. Armstrong prepares to fly the Lunar Landing Training Vehicle (LLTV) at Ellington Air Force Base in Houston. Middle: Armstrong airborne in the LLTV. Right: Apollo 11 backup Commander James A. Lovell following a flight in the LLTV.
      On June 6, NASA managers approved the resumption of astronaut training flights in the Lunar Landing Training Vehicle (LLTV) at Ellington Air Force Base (AFB) near MSC. The LLTV simulated the flight characteristics of the LM and astronauts used it to train for the final 200 feet of the descent to the lunar surface. Managers reached the decision after reviewing findings from the Review Board headed by astronaut Walter M. Schirra that investigated the Dec. 8, 1968 crash of LLTV-1 as well as results from flights in LLTV-2 made by MSC test pilots Harold E. “Bud” Ream and Jere B. Cobb. Between June 14 and 16, Armstrong flew LLTV-2 eight times to complete his training program with the vehicle. He had previously completed 12 simulated Moon landings in the LLTV and its predecessor, the Lunar Landing Research Vehicle (LLRV), narrowly escaping the crash of LLRV-1 in May 1968. Backup Commander Lovell completed four flights in the LLTV between June 19 and July 1. Armstrong, Aldrin, Lovell, and Haise also practiced landings in the Lunar Landing Research Facility (LLRF) at NASA’s Langley Research Center in Hampton, Virginia.

      Left: Senior NASA managers monitor the Apollo 11 Countdown Demonstration Test (CDDT) in Firing Room 1 of the Launch Control Center at NASA’s Kennedy Space Center. Right: The team of controllers in Firing Room 1 monitor the Apollo 11 CDDT.

      Left: Apollo 11 astronauts Neil A. Armstrong, front, Michael Collins, and Edwin E. “Buzz” Aldrin about to board the transfer van to Launch Pad 39A for the Countdown Demonstration Test (CDDT). Middle: Workers in the White Room assist Collins, left, Armstrong, and Aldrin to enter their spacecraft for the CDDT. Right: Armstrong, left, Aldrin, and Collins leave Launch Pad 39A at the conclusion of the CDDT.
      At KSC, engineers completed the three-day Flight Readiness Test on June 6, ensuring the flight readiness of the Saturn V rocket and the Apollo spacecraft perched on Launch Pad 39A. On June 17, top managers from NASA Headquarters and the Directors of MSC, KSC, and the Marshall Space Flight Center in Huntsville, Alabama, held the Flight Readiness Review at KSC. The meeting reviewed all aspects of readiness for the launch and mission, clearing the way for the next milestone, the Countdown Demonstration Test (CDDT). The CDDT, a full dress rehearsal for the actual countdown to launch, consisted of two parts. The “wet” test, conducted from June 27 to July 2, included fueling the rocket as if for flight, with the countdown stopping just prior to first stage engine ignition, and did not involve the flight crew. The “dry” test followed on July 3, an abbreviated countdown without fueling the rocket but with the astronauts boarding the CM as if on launch day. Controllers in Firing Room 1 of the Launch Control Center at Launch Complex 39 monitored all aspects of the CDDT as they would for an actual countdown. The successful test cleared the way for the start of the launch countdown at 8 p.m. EDT on July 10, leading to launch on July 16.

      The three commemorative items carried aboard Apollo 11. Left: The Lunar Flag Assembly. Middle: The stainless steel commemorative plaque. Right: The silicon disc containing messages of goodwill from world leaders.
      On July 2, NASA announced that Armstrong and Aldrin would leave three symbolic items behind on the Moon to commemorate the historic first landing – an American flag, a commemorative plaque, and a silicon disc bearing messages from world leaders. The astronauts would plant the three-by-five-foot flag near their LM during their spacewalk. The stainless steel plaque bore the images of the two hemispheres of the Earth and this inscription,
      HERE MEN FROM THE PLANET EARTH
      FIRST SET FOOT UPON THE MOON
      JULY 1969 A.D.
      WE CAME IN PEACE FOR ALL MANKIND
      The signatures of the three astronauts and President Richard M. Nixon also appeared on the plaque. Workers mounted it on the forward landing leg strut of the LM. The one-and-one-half-inch silicon disc contained messages of goodwill from 73 world leaders, etched on the disk using the technique to make microcircuits for electronic equipment. The crew placed the disc on the lunar surface at the end of their spacewalk.

      Left: Apollo 11 astronauts Neil A. Armstrong, left, Edwin E. “Buzz” Aldrin, and Michael Collins hold a copy of the commemorative plaque they will leave behind on the Moon and their mission patch. Right: The Apollo 11 astronauts in the glass-enclosed room at the Lunar Receiving Laboratory.
      During a July 5 press conference in the MSC auditorium, the Apollo 11 astronauts revealed the call signs for their spacecraft. They named their CM Columbia and their LM Eagle. “We selected these as being representative of the flight, the nation’s hope,” said Armstrong. Columbia served as a national symbol represented by a statue atop the Capitol in Washington, D.C. They named the LM after the symbol of the United States, the bald eagle, featured on the Apollo 11 mission patch. In a second event, the astronauts answered reporters’ questions from inside a glass-enclosed conference room at MSC’s Lunar Receiving Laboratory (LRL). After their mission, the returning astronauts completed their 21-day quarantine in the LRL to prevent any back contamination of the Earth by any possible lunar microorganisms.

      NASA’s Johnson Space Center in Houston, workers simulate the arrival of the first Moon rocks and other items returned from Apollo 11. Middle: Workers practice docking the Mobile Quarantine Facility (MQF) with the LRL. Right: In Pearl Harbor, Hawaii, workers barge the prime and backup MQFs to load them onto the U.S.S. Hornet. Image credit: courtesy U.S. Navy.
      At the LRL, other preparations for the return of the Apollo 11 astronauts from the Moon included a simulation of the arrival and processing of the Moon rocks and other items following the mission. The rocks, crew biological samples, and film would be flown from the prime recovery ship to Houston ahead of the crew. Engineers and technicians also rehearsed the arrival of the crew with a dry run of docking a Mobile Quarantine Facility (MQF) to the LRL’s loading dock. Following the test, workers loaded two MQFs, a prime and a backup, onto a cargo plane for transport to Hawaii and loading onto the prime recovery ship.

      Left: Workers in Pearl Harbor, Hawaii, prepare to lift a boilerplate Apollo Command Module onto the U.S.S. Hornet for splashdown and recovery rehearsals. Image credit: courtesy U.S. Navy Bob Fish. Middle: Crews from the U.S.S. Hornet practice recovery operations. Right: Recovery team members dry their Biological Isolation Garments aboard the U.S.S. Hornet following a recovery exercise.
      On June 12, the U.S. Navy notified NASA that it had selected the U.S.S. Hornet (CVS-12) as the prime recovery ship for Apollo 11 to undertake the most complex recovery of an astronaut crew. The same day, with Hornet docked in her home port of Long Beach, California, its commanding officer, Capt. Carl J. Seiberlich, held the first recovery team meeting to review the Apollo Recovery Operations Manual, written by MSC’s Landing and Recovery Division. Between June 12 and 25, Hornet onloaded NASA equipment required for the recovery. On June 27, Hornet left Long Beach for a three-hour stop in San Diego, where air group maintenance and support personnel embarked. The next day, after Hornet left for Pearl Harbor, Hawaii, pilots flew the aircraft required to support the recovery onto the carrier. During the cruise to Pearl Harbor, Hornet’s 90-man team detailed for Apollo 11 recovery operations held numerous meetings and table-top simulations. After arriving in Hawaii on July 2, workers loaded a boilerplate Apollo capsule onto the aircraft carrier to be used for recovery practice. The NASA recovery team, the Frogmen swimmers from the U.S. Navy’s Underwater Demolition Team 11 (UDT-11) who assisted with the recovery, and some media personnel arrived onboard. For the recovery operation, Capt. Seiberlich adopted the motto “Hornet Plus Three,” indicating the goal of a safe recovery of the three astronauts returning from the Moon. On July 3, Capt. Seiberlich introduced the 35-member NASA recovery team to the Hornet’s crew. Donald E. Stullken, Chief of the Recovery Operations Branch at MSC and inventor of the inflatable flotation collar attached by swimmers to the capsule after splashdown, led the NASA team. His assistant John C. Stonesifer oversaw the decontamination and quarantine operations. Stullken and Stonesifer briefed Hornet’s Command Module Retrieval Team on all events associated with the recovery and retrieval of an Apollo capsule and its crew. On July 6, workers loaded the two MQFs aboard Hornet. The prime MQF would house the returning astronauts, a flight surgeon, and an engineer from shortly after splashdown until their arrival at the LRL in Houston several days later. The second MQF served as a backup should a problem arise with the first or if violations of quarantine protocols required additional personnel to be isolated. Along with the MQFs, Navy personnel loaded other equipment necessary for the recovery, including 55 one-gallon containers of sodium hypochlorite to be used as a disinfectant. Between July 7 and 9, the Hornet conducted nine Simulated Recovery Exercises in local Hawaiian waters. Lieutenant Clarence J. “Clancy” Hatleberg led the team as the designated decontamination swimmer with U.S. Navy Frogmen serving as stand-ins for the astronauts, all wearing Biological Isolation Garments as they would on recovery day. The Hornet returned to Pearl Harbor to pick up the rest of the NASA recovery team before setting sail on July 12 for its first recovery position. 
      Apollo 12

      Left: Apollo 12 astronauts Charles “Pete” Conrad, left, Alan L. Bean, and Richard F. Gordon prepare to enter their Command Module for an altitude test. Right: Conrad after completing a flight in the Lunar Landing Training Vehicle.

      Left: In the Manned Spacecraft Operations Building (MSOB) at NASA’s Kennedy Space Center, workers finish attaching the landing gear to the Apollo 12 Lunar Module (LM). Middle left: Workers in the MSOB prepare to mate the Apollo 12 Command and Service Modules with the Spacecraft LM Adapter. Middle right: Workers move the assembled Apollo 12 spacecraft from the MSOB to the Vehicle Assembly Building (VAB). Right: In the VAB. workers lower the Apollo 12 spacecraft onto its Saturn V rocket.
      With Apollo 11 on its launch pad, workers continued to prepare Apollo 12 for its eventual journey to the Moon, targeting a September launch should Apollo 11 not succeed. If Apollo 11 succeeded in its Moon landing mission, Apollo 12 would fly later, most likely in November, to attempt the second Moon landing at a different location. In KSC’s Vehicle Assembly Building (VAB), the three-stage Saturn V stood on its Mobile Launcher, awaiting the arrival of the Apollo spacecraft. In the nearby Manned Spacecraft Operations Building, the Apollo 12 prime crew of Charles “Pete” Conrad, Richard F. Gordon, and Alan L. Bean and their backups David R. Scott, Alfred M. Worden, and James B. Irwin completed altitude chamber tests of the CM and LM during the first two weeks of June. Workers removed the spacecraft from the vacuum chambers, mated them on June 27, and transferred them to the VAB on July 1 for stacking on the Saturn V rocket. At Ellington AFB in Houston, Conrad completed his first flights aboard LLTV-2 on July 9-10.
      Apollo 13

      Left: In the Vehicle Assembly Building at NASA’s Kennedy Space Center (KSC) in Florida, workers place the first stage of the Apollo 13 Saturn V rocket onto the Mobile Launcher to begin the stacking process. Middle: The Apollo 13 Command and Service Modules arrive at KSC. Right: The ascent stage of the Apollo 13 Lunar Module arrives at KSC.
      In the event that neither Apollo 11 nor 12 succeeded in landing on the Moon, NASA stood prepared to try a third time with Apollo 13 in November or December, still in time to meet President Kennedy’s deadline. The Apollo 13 Command and Service Modules arrived at KSC on June 26, followed by the LM ascent and descent stages on June 28 and 29, respectively. The Saturn V’s S-IC first stage arrived on June 16 and workers placed it on its Mobile Launcher two days later. The S-IVB third stage and S-II second stage arrived June 13 and 29, respectively, and workers stacked the stages in mid-July.
      To be continued …
      News from around the world in June 1969:
      June 3 – Eric Carle publishes children’s picture book “The Very Hungry Caterpillar.”
      June 3 – The final episode of Star Trek airs on NBC.
      June 5 – The Tupolev Tu-144 became the first passenger jet to fly faster than the speed of sound.
      June 10 – The Nixon Administration cancels the U.S. Air Force Manned Orbiting Laboratory program.
      June 15 – “Hee Haw,” with Roy Clark and Buck Owens, premieres on CBS.
      June 20 – Georges Pompidou sworn in as the 19th President of France.
      June 20 – 200,000 attend Newport ’69, then largest-ever pop concert, in Northridge, California.
      June 23 – Warren E. Burger sworn in as U.S. Supreme Court Chief Justice.
      June 28 – Police carry out a raid at the Stonewall Inn in Greenwich Village, New York, beginning the modern LGBT rights movement.
      Explore More
      2 min read Giant Batteries Deliver Renewable Energy When It’s Needed
      Article 4 hours ago 4 min read NASA Preserves Its Past at Kennedy While Building Future of Space
      Article 9 hours ago 7 min read 15 Years Ago: Lunar Reconnaissance Orbiter Begins Moon Mapping Mission
      Article 2 days ago View the full article
    • By NASA
      4 Min Read Next Generation NASA Technologies Tested in Flight
      Erin Rezich, Ian Haskin, QuynhGiao Nguyen, Jason Hill (Zero-G staff), and George Butt experience Lunar gravity while running test operations on the UBER payload. Credits: Zero-G Teams of NASA researchers put their next-generation technologies to the microgravity test in a series of parabolic flights that aim to advance innovations supporting the agency’s space exploration goals.
      These parabolic flights provide a gateway to weightlessness, allowing research teams to interact with their hardware in reduced gravity conditions for intervals of approximately 22 seconds. The flights, which ran from February to April, took place aboard Zero Gravity Corporation’s G-FORCE ONE aircraft and helped to advance several promising space technologies.

      Under the Fundamental Regolith Properties, Handling, and Water Capture (FLEET) project, researchers tested an ultrasonic blade technology in a regolith simulant at lunar and Martian gravities. On Earth, vibratory tools reduce the forces between the tool and the soil, which also lowers the reaction forces experienced by the system. Such reductions indicate the potential for mass savings for tool systems used in space. 
      This flight test aims to establish the magnitude of force reduction achieved by an ultrasonic tool on the Moon and Mars. Regolith interaction, including excavation, will be important to NASA’s resources to support long-duration lunar and Martian missions.
      This experiment represents the success of an international effort three years in the making between NASA and Concordia University in Montreal, Quebec.
      Erin Rezich
      Project Principal Investigator
      “This experiment represents the success of an international effort three years in the making between NASA and Concordia University in Montreal, Quebec. It was a NASA bucket list item for me to conduct a parabolic flight experiment, and it was even more special to do it for my doctoral thesis work. I’m very proud of my team and everyone’s effort to make this a reality,” said Erin Rezich, project principal investigator at NASA’s Glenn Research Center in Cleveland, Ohio. 
      The FLEET project also has a separate payload planned for a future flight test on a suborbital rocket. The Vibratory Lunar Regolith Conveyor will demonstrate a granular material (regolith) transport system to study the vertical transport of lunar regolith simulants (soil) in a vacuum under a reduced gravity environment.
      These two FLEET payloads increase the understanding of excavation behavior and how the excavated soil will be transported in a reduced gravity environment.
      QuynhGiao Nguyen takes experiment notes while Pierre-Lucas Aubin-Fournier and George Butt oversee experiment operations during a soil reset period between parabolas.Zero-G 3D Printed Technologies Take on Microgravity 

      Under the agency’s On-Demand Manufacturing of Electronics (ODME) project, researchers tested 3D printing technologies to ease the use of electronics and tools aboard the International Space Station.

      Flying its first microgravity environment test, the ODME Advanced Toolplate team evaluated a new set of substantially smaller 3D printed tools that provide more capabilities and reduce tool changeouts. The toolplate offers eight swappable toolheads so that new technologies can be integrated after it is sent up to the space station. The 3D printer component enables in-space manufacturing of electronics and sensors for structural and crew-monitoring systems and multi-material 3D printing of metals.
      “The development of these critical 3D printing technologies for microelectronics and semiconductors will advance the technology readiness of these processes and reduce the risk for planned future orbital demonstrations on the International Space Station.
      curtis hill
      ODME Project Principal Investigator
      Left to Right: Pengyu Zhang, Rayne Wolfe, and Jacob Kocemba (University of Wisconsin at Madison) control the Electrohydrodynamic (EHD) ink jet printer testing manufacturing processes that are relevant to semiconductors for the NASA On Demand Manufacturing of Electronics (ODME) project.Zero-G NASA researchers tested another 3D printing technology developed under the agency’s ODME project for manufacturing flexible electronics in space. The Space Enabled Advanced Devices and Semiconductors team is developing electrohydrodynamic inkjet printer technology for semiconductor device manufacturing aboard the space station. The printer will allow for printing electronics and semiconductors with a single development cartridge, which could be updated in the future for various materials systems.
      (Left to right) Paul Deffenbaugh (Sciperio), Cadré Francis (NASA MSFC), Christopher Roberts (NASA MSFC), Connor Whitley (Sciperio), and Tanner Corby (Redwire Space Technologies) operate the On Demand Manufacturing of Electronics (ODME) Advanced Toolplate printer in zero gravity to demonstrate the potential capability of electronics manufacturing in space.Zero-G The On Demand Manufacturing of Electronics (ODME) Advanced Toolplate printer mills a Fused Deposition Modeling (FDM) printed plastic substrate surface smooth in preparation for the further printing of electronic traces. Conducting this study in zero gravity allowed for analysis of Foreign Object Debris (FOD) capture created during milling.Zero-G Left to Right: Rayne Wolfe and Jacob Kocemba (University of Wisconsin at Madison) control the Electrohydrodynamic (EHD) ink jet printer testing manufacturing processes that are relevant to semiconductors for the NASA On Demand Manufacturing of Electronics (ODME) project.Zero-G Left to Right: Pengyu Zhang, Rayne Wolfe, and Jacob Kocemba (University of Wisconsin at Madison) control the Electrohydrodynamic (EHD) ink jet printer testing manufacturing processes that are relevant to semiconductors for the NASA On Demand Manufacturing of Electronics (ODME) project.Zero-G NASA’s Flight Opportunities program supported testing various technologies in a series of parabolic flights earlier this year. These technologies are managed under NASA’s Game Changing Development program within the Space Technology Mission Directorate. Space Enabled Advanced Devices and Semiconductors technology collaborators included Intel Corp., Tokyo Electron America, the University of Wisconsin-Madison, Arizona State University, and Iowa State University. The Space Operations Mission Directorate’s In-Space Production Applications also supports this technology. Advanced Toolplate Technology collaborated with Redwire and Sciperio. The Ultrasonic Blade technology is a partnership with NASA’s Glenn Research Center in Cleveland, Ohio, and Concordia University in Montreal, Quebec, through an International Space Act Agreement.

      For more information about the Game Changing Development program, visit: nasa.gov/stmd-game-changing-development/

      For more information about the Flight Opportunities program, visit: nasa.gov/stmd-flight-opportunities/ 
      Testing In-Space Manufacturing Techs and More in Flight Facebook logo @NASATechnology @NASA_Technology Share
      Details
      Last Updated Jun 20, 2024 EditorIvry Artis Related Terms
      Game Changing Development Program Flight Opportunities Program Space Technology Mission Directorate Explore More
      3 min read NSTGRO 2024
      Article 7 days ago 3 min read NASA’s RASC-AL Competition Selects 2024 Winners  
      Article 7 days ago 4 min read California Teams Win $1.5 Million in NASA’s Break the Ice Lunar Challenge
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Game Changing Development
      Space Technology Mission Directorate
      STMD Flight Opportunities
      Glenn Research Center
      View the full article
  • Check out these Videos

×
×
  • Create New...