Jump to content

Historic Greenland ice sheet rainfall unravelled


Recommended Posts

Greenland ice sheet melt

For the first time ever recorded, in the late summer of 2021, rain fell on the high central region of the Greenland ice sheet. This extraordinary event was followed by the surface snow and ice melting rapidly. Researchers now understand exactly what went on in those fateful summer days and what we can learn from it.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read NASA Returns to Arctic Studying Summer Sea Ice Melt
      NASA's Gulfstream III aircraft taxis on the runway at Pituffik Space Base as it begins one of its daily science flights for the ARCSIX mission. Credits: NASA/Gary Banziger What happens in the Arctic doesn’t stay in the Arctic, and a new NASA mission is helping improve data modeling and increasing our understanding of Earth’s rapidly changing climate. Changing ice, ocean, and atmospheric conditions in the northernmost part of Earth have a large impact on the entire planet. That’s because the Arctic region acts like Earth’s air conditioner.  
      Much of the Sun’s energy is transported from tropical regions of our planet by winds and weather systems into the Arctic where it is then lost to space. This process helps cool the planet.  
      The NASA-sponsored Arctic Radiation Cloud Aerosol Surface Interaction Experiment (ARCSIX) mission is flying three aircraft over the Arctic Ocean north of Greenland to study these processes. The aircraft are equipped with instruments to gather observations of surface sea ice, clouds, and aerosol particles, which affect the Arctic energy budget and cloud properties. The energy budget is the balance between the energy that Earth receives from the Sun and the energy the Earth loses to outer space. 
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This highlight video gives viewers a front row seat to a typical day on the ARCSIX mission from Pituffik Space Base as NASA's research scientists, instrument operators, and flight crews fly daily routes observing sea ice and clouds 750 miles north of the Arctic Circle in Greenland.NASA/Gary Banziger “More sea ice makes that air conditioning effect more efficient. Less sea ice lessens the Arctic’s cooling effect,” says Patrick Taylor, a climate scientist at NASA’s Langley Research Center in Hampton, Virginia. “Over the last 40 years, The Arctic has lost a significant amount of sea ice making the Arctic warm faster. As the Arctic warms and sea ice melts, it can cause ripple effects that impact weather conditions thousands of miles away, how fast our seas are rising, and how much flooding we get in our neighborhoods.” 
      As the Arctic warms and sea ice melts, it can cause ripple effects…thousands of miles away.
      Patrick Taylor
      NASA Climate Research Scientist
      The first series of flights took place in May and June as the seasonal melting of ice started. Flights began again on July 24 during the summer season, when sea ice melting is at its most intense. 
      “We can’t do this kind of Arctic science without having two campaigns,” said Taylor, the deputy science lead for ARCSIX. “The sea ice surface in the spring was very bright white and snow covered. We saw some breaks in the ice. What we will see in the second campaign is less sea ice and sea ice that is bare, with no snow. It will be covered with all kinds of melt ponds – pooling water on top of the ice – that changes the way the ice interacts with sunlight and potentially changes how the ice interacts with the atmosphere and clouds above.” 
      Sea ice and the snow on top of the ice insulate the ocean from the atmosphere, reflecting the Sun’s radiation back towards space, and helping to cool the planet. Less sea ice and darker surfaces result in more of the Sun’s radiation being absorbed at the surface or trapped between the surface and the clouds.  
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      A pilot's view of Arctic sea ice from NASA's P-3 Orion aircraft during NASA's ARCSIX airborne science mission flights in June.NASA/Gary Banziger Understanding this relationship, and the role clouds play in the system, will help scientists improve satellite data and better predict future changes in the Arctic climate.  
      “This unique team of pilots, engineers, scientists, and aircraft can only be done by leveraging expertise from multiple NASA centers and our partners,” said Linette Boisvert, cryosphere lead for the mission from NASA’s Space Flight Center in Greenbelt, Maryland. “We gathered great data of the snow and ice pre-melt and at the onset of melt. I can’t wait to see the changes at the height of melt as we measure the same areas covered with melt ponds.” 
      NASA partnered with the University of Colorado Boulder for the ARCSIX mission, and the research team found some surprises in their early data analysis from the spring campaign. One potential discovery is something Taylor is calling a “sea ice sandwich”, when a younger layer of sea ice is caught in between two layers of older sea ice. Scientists also found more drizzle within the clouds than expected. Both observations will need further investigating once the data is fully processed. 
      A research scientist monitors data measurements in-flight during the spring campaign of the ARCSIX mission.NASA/Gary Banziger “A volcano erupted in Iceland, and we believe the volcanic aerosol plume was indicated by our models four days later,” Taylor said. “Common scientific knowledge tells us volcanic particles, like ash and sulfate, would have already been removed from the atmosphere. More work needs to be done, but our initial results suggest these particles might live in the atmosphere much longer than previously thought.” 
      Previous studies suggest that aerosol particles in clouds can influence sea ice melt. Data collected during ARCSIX’s spring flights showed the Arctic atmosphere had several aerosol particle layers, including wildfire smoke, pollution, and dust transported from Asia and North America. 
      “We got everything we hoped for and more in the first campaign,” Taylor added. “The data from this summer will help us better understand how clouds and sea ice behave. We’ll be able to use these results to improve predictive models. In the coming years, scientists will be able to better predict how to mitigate and adapt to the rapid changes in climate we’re seeing in the Arctic.” 
       
      Read More ESPO.NASA.gov 
      AIR.LARC.NASA.gov 
      NASA.gov/Earth 
      Share
      Details
      Last Updated Jul 26, 2024 EditorCharles G. HatfieldContactCharles G. Hatfieldcharles.g.hatfield@nasa.govLocationLangley Research Center Related Terms
      Earth Airborne Science Goddard Space Flight Center Ice & Glaciers Langley Research Center Sea Ice Wallops Flight Facility Explore More
      4 min read NASA Mission Flies Over Arctic to Study Sea Ice Melt Causes
      Article 2 months ago 5 min read Antarctic Sea Ice Near Historic Lows; Arctic Ice Continues Decline
      Article 4 months ago 4 min read NASA Ice Scientists Take Flight from Greenland to Study Melting Arctic Ice
      Article 2 years ago View the full article
    • By NASA
      NASA Stennis Autonomous Systems Laboratory Project Engineer Travis Martin monitors successful data delivery from the center’s ASTRA payload aboard the orbiting Sidus Space LizzieSat-1 satellite. The ASTRA autonomous systems hardware/software payload represents the first-ever in-space mission for NASA Stennis. NASA/Danny Nowlin NASA’s Stennis Space Center and partner Sidus Space Inc. announced primary mission success July 2 for the center’s historic in-space mission – an autonomous systems payload aboard an orbiting satellite.
      “Our ASTRA (Autonomous Satellite Technology for Resilient Applications) payload is active and operational,” NASA Stennis Center Director John Bailey said. “This is an incredible achievement for Stennis, our first-ever in-space mission flying on a new state-of-the-art satellite. We are all celebrating the news.”
      ASTRA is the on-orbit payload mission developed by NASA Stennis and is an autonomous systems hardware/software payload. The NASA Stennis ASTRA technology demonstrator is a payload rider aboard the Sidus Space premier satellite, LizzieSat-1 (LS-1) small satellite. Partner Sidus Space is responsible for all LS-1 mission operations, including launch and satellite activation, which allowed the NASA Stennis ASTRA team to complete its primary mission objectives.
      LS-1 launched into space on the SpaceX Transporter 10 rideshare mission March 4 and deployed the same day. The LS-1 satellite commissioning began after deployment and was completed on May 12. Sidus Space’s next step was to begin activation of payloads, including ASTRA.
      After the payload was activated, the NASA Stennis Autonomous Systems Laboratory (ASL) team confirmed they had established a telemetry link to send and receive data in the ASTRA Payload Operation Command Center. The ASL team continued to checkout and verify operation of ASTRA and has confirmed that ASTRA primary mission objectives have been successfully achieved.  
      “This is just a remarkable and inspiring accomplishment for the entire team,” said Chris Carmichael, NASA Stennis ASL branch chief. “So many people put in a tremendous effort to bring us to this point. It is a great demonstration of the team’s vision and capabilities, and I am excited to see what the future holds.”
      The NASA Stennis ASL works to create safe-by-design autonomous systems. ASTRA demonstrates technology that is required by NASA and industry for upcoming space missions. The ASTRA computer on the satellite runs a digital twin of satellite systems, which detects and identifies the causes of anomalies, and autonomously generates plans to resolve those issues. Ultimately, ASTRA will demonstrate autonomous operations of LS-1.
      “Achieving ASTRA’s primary mission objectives underscores our dedication and commitment to driving innovation while advancing space technology alongside NASA, our trusted partner,” said Carol Craig, Founder and CEO of Sidus Space. “We are proud to support such groundbreaking projects in our industry and eagerly anticipate the continued progress of our LizzieSat-1 mission.”
      The success of the ASTRA mission comes as NASA Stennis moves forward with strategic plans to design autonomous systems that will help accelerate development of intelligent aerospace systems and services for government and industry.
      For information about NASA’s Stennis Space Center, visit:
      Stennis Space Center – NASA
      Share
      Details
      Last Updated Jul 02, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      9 min read Lagniappe for June 2024
      Explore the Lagniappe for June 2024 issue, featuring an innovative approach to infrastructure upgrades, how…
      Article 4 weeks ago 12 min read NASA’s Stennis Space Center Employees Receive NASA Honor Awards
      Article 4 weeks ago 4 min read NASA Stennis Helps Family Build a Generational Legacy
      Article 1 month ago Keep Exploring Discover More Topics From NASA Stennis
      About NASA Stennis
      NASA Stennis Front Door
      Autonomous Systems
      NASA Stennis Media Resources
      View the full article
    • By Space Force
      Pituffik Space Base hosted King Frederik X, king of the Kingdom of Denmark, his wife, Queen Mary, queen of the Kingdom of Denmark, and Greenland’s Prime Minister Múte Bourup Egede, June 29.

      View the full article
    • By NASA
      NASA/Wanmei Liang, using MODIS data from NASA EOSDIS LANCE and GIBS/Worldview NASA’s Terra satellite captured floating fragments of sea ice as ocean currents carried them south along Greenland’s east coast on June 4, 2024.
      This ice traveled from the Fram Strait, a 450-kilometer (280-mile)-wide passage between Greenland and Svalbard, to the Arctic Ocean. Along the journey, it breaks into smaller pieces and starts to melt in warmer ocean waters, creating the wispy patterns seen here.
      Learn more about Arctic sea ice.
      Image Credit: NASA/Wanmei Liang, using MODIS data from NASA EOSDIS LANCE and GIBS/Worldview
      View the full article
    • By NASA
      4 Min Read California Teams Win $1.5 Million in NASA’s Break the Ice Lunar Challenge
      By Savannah Bullard
      After two days of live competitions, two teams from southern California are heading home with a combined $1.5 million from NASA’s Break the Ice Lunar Challenge. 
      The husband-and-wife duo of Terra Engineering, Valerie and Todd Mendenhall, receive the $1 million prize Wednesday, June 12, for winning the final phase of NASA’s Break the Ice Lunar Challenge at Alabama A&M’s Agribition Center in Huntsville, Alabama. With the Terra Engineering team at the awards ceremony are from left Daniel K. Wims, Alabama A&M University president; Joseph Pelfrey, NASA Marshall Space Flight center director; NASA’s Break the Ice Challenge Manager Naveen Vetcha; and Majed El-Dweik, Alabama A&M University’s vice president of research & economic development. NASA/Jonathan Deal Since 2020, competitors from around the world have competed in this challenge with the common goal of inventing robots that can excavate and transport the icy regolith on the Moon. The lunar South Pole is the targeted landing site for crewed Artemis missions, so utilizing all resources in that area, including the ice within the dusty regolith inside the permanently shadowed regions, is vital for the success of a sustained human lunar presence.
      On Earth, the mission architectures developed in this challenge aim to help guide machine design and operation concepts for future mining and excavation operations and equipment for decades.
      “Break the Ice represents a significant milestone in our journey toward sustainable lunar exploration and a future human presence on the Moon,” said Joseph Pelfrey, Center Director of NASA’s Marshall Space Flight Center. “This competition has pushed the boundaries of what is possible by challenging the brightest minds to devise groundbreaking solutions for excavating lunar ice, a crucial resource for future missions. Together, we are forging a future where humanity ventures further into the cosmos than ever before.”
      The final round of the Break the Ice competition featured six finalist teams who succeeded in an earlier phase of the challenge. The competition took place at the Alabama A&M Agribition Center in Huntsville, Alabama, on June 11 and 12, where each team put their diverse solutions to the test in a series of trials, using terrestrial resources like gravity-offloading cranes, concrete slabs, and a rocky track with tricky obstacles to mimic the environment on the Moon.
      Thehusband-and-wife duo of Terra Engineering took home the top prize for their “Irresistible Object” rover. Team lead Todd Mendenhall competed in NASA’s 2007 Regolith Excavation Challenge, facilitated through NASA’s Centennial Challenges, which led him and Valerie Mendenhall to continue the pursuit of solutions for autonomous lunar excavation.
      Starpath Robotics earned the second place prize for its four-wheeled rover that can mine, collect, and haul material during the final phase of NASA’s Break the Ice Lunar Challenge at Alabama A&M’s Agribition Center in Huntsville, Alabama. From left are Matt Kruszynski, Saurav Shroff, Matt Khudari, Alan Hsu, David Aden, Mihir Gondhalekarl, Joshua Huang and Aakash Ramachandran.NASA/Jonathan Deal A small space hardware business, Starpath Robotics, earned the second-place prize for its four-wheeled rover that can mine, collect, and haul material. The team, led by Saurav Shroff and lead engineer Mihir Gondhalekar, developed a robotic mining tool that features a drum barrel scraping mechanism for breaking into the tough lunar surface. This allows the robot to mine material quickly and robustly without sacrificing energy.
      “This challenge has been pivotal in advancing the technologies we need to achieve a sustained human presence on the Moon,” said Kim Krome, the Acting Program Manager for NASA’s Centennial Challenges. “Terra Engineering’s rover, especially, bridged several of the technology gaps that we identified – for instance, being robust and resilient enough to traverse rocky landscapes and survive the harsh conditions of the lunar South Pole.”
      Beyond the $1.5 million in prize funds, three teams will be given the chance to use Marshall Space Flight Center’s thermal vacuum (TVAC) chambers to continue testing and developing their robots. These chambers use thermal vacuum technologies to create a simulated lunar environment, allowing scientists and researchers to build, test, and approve hardware for flight-ready use.
      The following teams performed exceptionally well in the excavation portion of the final competition, earning these invitations to the TVAC facilities:
      Terra Engineering (Gardena, California) Starpath Robotics (Hawthorne, California) Michigan Technological University – Planetary Surface Technology Development Lab (Houghton, Michigan) “We’re looking forward to hosting three of our finalists at our thermal vacuum chamber, where they will get full access to continue testing and developing their technologies in our state-of-the-art facilities,” said Break the Ice Challenge Manager Naveen Vetcha, who supports NASA’s Centennial Challenges through Jacobs Space Exploration Group. “Hopefully, these tests will allow the teams to take their solutions to the next level and open the door for opportunities for years to come.”
      NASA’s Break the Ice Lunar Challenge is a NASA Centennial Challenge led by the agency’s Marshall Space Flight Center, with support from NASA’s Kennedy Space Center in  Florida. Centennial Challenges are part of the Prizes, Challenges, and Crowdsourcing program under NASA’s Space Technology Mission Directorate. Ensemble Consultancy supports challenge competitors. Alabama A&M University, in coordination with NASA, supports the final competitions and winner event for the challenge.
      For more information on Break the Ice, visit:
      nasa.gov/breaktheice
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      jonathan.e.deal@nasa.gov 
      Share
      Details
      Last Updated Jun 13, 2024 LocationMarshall Space Flight Center Related Terms
      General Centennial Challenges Centennial Challenges News Marshall Space Flight Center Prizes, Challenges, and Crowdsourcing Program Explore More
      4 min read Six Finalists Named in NASA’s $3.5 Million Break the Ice Challenge
      Article 6 months ago 4 min read NASA Awards $500,000 in Break the Ice Lunar Challenge
      Article 3 years ago 3 min read Break the Ice Lunar Challenge Phase 2
      Article 2 years ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...