Jump to content

Navy 2021 Flyby UAP Video - Officially Released by the DoD 5/17/2022


Recommended Posts

In a an open hearing on Unidentified Aerial Phenomena (UAP) before the House Intelligence Counterterrorism, Counterintelligence, and Counterproliferation Subcommittee on May 17, 2022, Deputy Director of Naval Intelligence Mr. Scott Bray shared this video of a US. Naval aviator encounter with an unknown object (UAP) in a fleeting pass. 

ufo%20uap.jpg

This video, captured by the pilot in the cockpit of a Navy fighter jet, demonstrates the typical speed at which military aircraft may approach an unknown object.

   

Furthermore, for those interested in Congress' big hearing on UFOs regarding the open portion of the hearing, see the video link below, which by the way is not interesting at all, since the real deal on the UFO/UAP phenomenon is kept secret from the public as the subcommittee will hold a closed, classified briefing on this issue. 

On Tuesday, May 17, 2022, at 9:00 a.m. ET, the House Intelligence Counterterrorism, Counterintelligence, and Counterproliferation Subcommittee, chaired by Congressman André Carson (D-Ind.) will hold an open hearing on unidentified aerial phenomena. 

Video link - Open C3 Subcommittee Hearing on Unidentified Aerial Phenomena 

Other related news: 

Black Box US has recovered wreckage from UFOs – the truth could change the world as we know it, says Congressman.

Key lawmaker warns at UFO hearing: 'Unidentified aerial phenomena are a potential national security threat' https://edition.cnn.com/2022/05/17/politics/house-ufo-hearing-congress/index.html 

Congress’s Big Hearing On UFOs Was Remarkably Down To Earth. https://www.thedrive.com/the-war-zone/congresss-ufo-hearing-was-very-down-to-earth

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      EMD Climate Adaptation NASA/EMDView the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Mechanical Engineer Jeff Pollack finalizes his design for the integration of the laser communications terminal into the PC-12 research aircraft.Credit: NASA/Sara Lowthian NASA invites media to attend a real-time laser communications experiment at the agency’s Glenn Research Center in Cleveland. Researchers are testing a laser communications networking system that could enable the public to watch the first woman and first person of color walk on the Moon in HD during the Artemis missions.
      The media availability begins at 11 a.m. EDT on Tuesday, July 30 (weather permitting) at the NASA Glenn aircraft hangar. Media will have the opportunity to see NASA’s Pilatus PC-12 aircraft take off and to film researchers on the ground as they communicate with the airborne team.
      During these tests, researchers flying over Lake Erie will test communications between NASA Glenn and the aircraft using High-Rate Delay Tolerant Networking developed by Glenn. The data is transferred over laser communications links at a rate of 1.2 gigabits per second — faster than most home internet speeds.
      Earlier this summer, the research team streamed 4K video to the International Space Station from an aircraft for the first time in history.
      Media interested in attending should contact Jan Wittry at jan.m.wittry-1@nasa.gov by 2 p.m. EDT on Monday, July 29.
      These experiments are part of NASA’s goal to stream very high-bandwidth video and other data from deep space, enabling future human missions beyond Earth orbit. In December, NASA streamed a video featuring a cat named Taters back to Earth from nearly 19 million miles away in deep space using NASA’s laser communications demonstration, marking a historic milestone.
      About Laser Communications
      Historically, missions have relied on the use of radio waves to exchange information to and from space. Now, NASA is embracing the power of laser communications, also known as optical communications, which uses infrared light rather than radio waves to transmit more data at once.
      As NASA explores the lunar surface with advanced science instruments and captures high-definition data, researchers will need faster ways to send large amounts of information to Earth. Laser communications will accelerate the data transfer process and enable 10 to 100 times more data transmitted back to Earth than current radio frequency systems.
      For more information on NASA, visit:
      http://www.nasa.govnasa.gov
      -end-
      Jan Wittry
      NASA Glenn Research Center, Cleveland
      216-433-5466
      jan.m.wittry-1@nasa.gov
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A graphic representation of a laser communications relay between the International Space Station, the Laser Communications Relay Demonstration spacecraft, and the Earth.Credit: NASA/Dave Ryan A team at NASA’s Glenn Research Center in Cleveland streamed 4K video footage from an aircraft to the International Space Station and back for the first time using optical, or laser, communications. The feat was part of a series of tests on new technology that could provide live video coverage of astronauts on the Moon during the Artemis missions.

      Historically, NASA has relied on radio waves to send information to and from space. Laser communications use infrared light to transmit 10 to 100 times more data faster than radio frequency systems.

      From left to right, Kurt Blankenship, research aircraft pilot, Adam Wroblewski, instrument operator, and Shaun McKeehan, High-Rate Delay Tolerant Networking software developer, wait outside the PC-12 aircraft, preparing to take flight. Credit: NASA/Sara Lowthian-Hanna Working with the Air Force Research Laboratory and NASA’s Small Business Innovation Research program, Glenn engineers temporarily installed a portable laser terminal on the belly of a Pilatus PC-12 aircraft. They then flew over Lake Erie sending data from the aircraft to an optical ground station in Cleveland. From there, it was sent over an Earth-based network to NASA’s White Sands Test Facility in Las Cruces, New Mexico, where scientists used infrared light signals to send the data.

      The signals traveled 22,000 miles away from Earth to NASA’s Laser Communications Relay Demonstration (LCRD), an orbiting experimental platform. The LCRD then relayed the signals to the ILLUMA-T (Integrated LCRD LEO User Modem and Amplifier Terminal) payload mounted on the orbiting laboratory, which then sent data back to Earth. During the experiments, High-Rate Delay Tolerant Networking (HDTN), a new system developed at Glenn, helped the signal penetrate cloud coverage more effectively.

      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      4K video footage was routed from the PC-12 aircraft to an optical ground station in Cleveland. From there, it was sent over an Earth-based network to NASA’s White Sands Test Facility in Las Cruces, New Mexico. The signals were then sent to NASA’s Laser Communications Relay Demonstration spacecraft and relayed to the ILLUMA-T payload on the International Space Station. Video Credit: NASA/Morgan Johnson “These experiments are a tremendous accomplishment,” said Dr. Daniel Raible, principal investigator for the HDTN project at Glenn. “We can now build upon the success of streaming 4K HD videos to and from the space station to provide future capabilities, like HD videoconferencing, for our Artemis astronauts, which will be important for crew health and activity coordination.”

      Mechanical Engineer Jeff Pollack finalizes his design for the integration of the laser communications terminal into the PC-12 research aircraft.Credit: NASA/Sara Lowthian-Hanna After each flight test, the team continuously improved the functionality of their technology. Aeronautics testing of space technology often finds issues more effectively than ground testing, while remaining more cost-effective than space testing. Proving success in a simulated space environment is key to moving new technology from a laboratory into the production phase.

      “Teams at Glenn ensure new ideas are not stuck in a lab, but actually flown in the relevant environment to ensure this technology can be matured to improve the lives of all of us,” said James Demers, chief of aircraft operations at Glenn.

      The flights were part of an agency initiative to stream high-bandwidth video and other data from deep space, enabling future human missions beyond low Earth orbit. As NASA continues to develop advanced science instruments to capture high-definition data on the Moon and beyond, the agency’s Space Communications and Navigation, or SCaN, program embraces laser communications to send large amounts of information back to Earth.
      The optical system temporarily installed on the belly of the PC-12 aircraft has proven to be a very reliable high-performance system to communicate with prototype flight instrumentation and evaluate emerging technologies to enhance high-bandwidth systems.Credit: NASA/Sara Lowthian-Hanna While the ILLUMA-T payload is no longer installed on the space station, researchers will continue to test 4K video streaming capabilities from the PC-12 aircraft through the remainder of July, with the goal of developing the technologies needed to stream humanity’s return to the lunar surface through Artemis.
      Explore More
      10 min read LIVE: NASA is with you from Oshkosh
      Article 1 hour ago 5 min read NASA’s 21st Northrop Grumman Mission Launches Scientific Studies to Station
      Article 1 day ago 5 min read Ground Antenna Trio to Give NASA’s Artemis Campaign ‘LEGS’ to Stand On
      Article 2 days ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This June 2021 aerial photograph shows the coastal launch range at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore. Wallops is the agency’s only owned-and-operated launch range. Courtesy Patrick J. Hendrickson; used with permission A rocket-propelled target is scheduled for launch July 27-28, 2024 from NASA’s launch range at the Wallops Flight Facility in Virginia in support of a U.S. Navy Fleet Training exercise.
      No real-time launch status updates will be available. The launch will not be livestreamed nor will launch status updates be provided during the countdown. The rocket launch may be visible from the Chesapeake Bay region.
      Share
      Details
      Last Updated Jul 19, 2024 EditorAmy BarraContactAmy Barraamy.l.barra@nasa.govLocationWallops Flight Facility Related Terms
      Wallops Flight Facility Explore More
      4 min read Wallops Missions, Programs and Projects
      Article 9 years ago 1 min read Field Carrier Landing Practice at Wallops
      Article 6 years ago 1 min read Wallops Range Supports First Rocket Lab HASTE Launch
      Rocket Lab launched its first-ever Hypersonic Accelerator Suborbital Test Electron, or HASTE, launch vehicle from…
      Article 1 year ago
      View the full article
    • By Space Force
      Buckley Space Force Base is one of many locations across the Department of Defense where wildlife biologists are working to monitor and restore habitats for monarchs butterflies to help facilitate this migration.

      View the full article
  • Check out these Videos

×
×
  • Create New...