Jump to content

DAF COVID-19 Statistics - May 17, 2022


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Swarming for Success: Starling Completes Primary Mission
      by Tara Friesen
      After ten months in orbit, the Starling spacecraft swarm successfully demonstrated its primary mission’s key objectives, representing significant achievements in the capability of swarm configurations. 
      Swarms of satellites may one day be used in deep space exploration. An autonomous network of spacecraft could self-navigate, manage scientific experiments, and execute maneuvers to respond to environmental changes without the burden of significant communications delays between the swarm and Earth. 
      The four CubeSate spacecraft that make up the Starling swarm have demonstrated success in autonomous operations, completing all key mission objectives. “The success of Starling’s initial mission represents a landmark achievement in the development of autonomous networks of small spacecraft,” said Roger Hunter, program manager for NASA’s Small Spacecraft Technology program at NASA’s Ames Research Center in California’s Silicon Valley. “The team has been very successful in achieving our objectives and adapting in the face of challenges.”  
      Sharing the Work
      The Distributed Spacecraft Autonomy (DSA) experiment, flown onboard Starling, demonstrated the spacecraft swarm’s ability to optimize data collection across the swarm. The CubeSats analyzed Earth’s ionosphere by identifying interesting phenomena and reaching a consensus between each satellite on an approach for analysis.  
      By sharing observational work across a swarm, each spacecraft can “share the load” and observe different data or work together to provide deeper analysis, reducing human workload, and keeping the spacecraft working without the need for new commands sent from the ground. 
      The experiment’s success means Starling is the first swarm to autonomously distribute information and operations data between spacecraft to generate plans to work more efficiently, and the first demonstration of a fully distributed onboard reasoning system capable of reacting quickly to changes in scientific observations. 
      Communicating Across the Swarm
      A swarm of spacecraft needs a network to communicate between each other. The Mobile Ad-hoc Network (MANET) experiment automatically established a network in space, allowing the swarm to relay commands and transfer data between one another and the ground, as well as share information about other experiments cooperatively.  
      The team successfully completed all the MANET experiment objectives, including demonstrating routing commands and data to one of the spacecraft having trouble with space to ground communications, a valuable benefit of a cooperative spacecraft swarm. 
      “The success of MANET demonstrates the robustness of a swarm,” said Howard Cannon, Starling project manager at NASA Ames. “For example, when the radio went down on one swarm spacecraft, we ‘side-loaded’ the spacecraft from another direction, sending commands, software updates, and other vital information to the spacecraft from another swarm member.” 
      Autonomous Swarm Navigation 
      Navigating and operating in relation to one another and the planet is an important part of forming a swarm of spacecraft. Starling Formation-Flying Optical Experiment, or StarFOX, uses star trackers to recognize a fellow swarm member, other satellite, or space debris from the background field of stars, then estimate each spacecraft’s position and velocity. 
      The experiment is the first-ever published demonstration of this type of swarm navigation, including the ability to track multiple members of a swarm simultaneously and the ability to share observations between the spacecraft, improving accuracy when determining each swarm member’s orbit. 
      Near the end of mission operations, the swarm was maneuvered into a passive safety ellipse, and in this formation, the StarFOX team was able to achieve a groundbreaking milestone, demonstrating the ability to autonomously estimate the swarm’s orbits using only inter-satellite measurements from the spacecraft star trackers. 
      Managing Swarm Maneuvers 
      The ability to plan and execute maneuvers with minimal human intervention is an important part of developing larger satellite swarms. Managing the trajectories and maneuvers of hundreds or thousands of spacecraft autonomously saves time and reduces complexity. 
      The Reconfiguration and Orbit Maintenance Experiments Onboard (ROMEO) system tests onboard maneuver planning and execution by estimating the spacecraft’s orbit and planning a maneuver to a new desired orbit. 
      The experiment team has successfully demonstrated the system’s ability to determine and plan a change in orbit and is working to refine the system to reduce propellant use and demonstrate executing the maneuvers. The team will continue to adapt and develop the system throughout Starling’s mission extension. 
      Swarming Together
      Now that Starling’s primary mission objectives are complete, the team will embark on a mission extension known as Starling 1.5, testing space traffic coordination in partnership with SpaceX’s Starlink constellation, which also has autonomous maneuvering capabilities. The project will explore how constellations operated by different users can share information through a ground hub to avoid potential collisions.  
      “Starling’s partnership with SpaceX is the next step in operating large networks of spacecraft and understanding how two autonomously maneuvering systems can safely operate in proximity to each other. As the number of operational spacecraft increases each year, we must learn how to manage orbital traffic,” said Hunter. 
      NASA’s Small Spacecraft Technology program, based at Ames and within NASA’s Space Technology Mission Directorate (STMD), funds and manages the Starling mission. Blue Canyon Technologies designed and manufactured the spacecraft buses and is providing mission operations support. Rocket Lab USA, Inc. provided launch and integration services. Partners supporting Starling’s payload experiments have included Stanford University’s Space Rendezvous Lab in Stanford, California, York Space Systems (formerly Emergent Space Technologies) of Denver, Colorado, CesiumAstro of Austin, Texas, L3Harris Technologies, Inc., of Melbourne, Florida. Funding support for the DSA experiment was provided by NASA’s Game Changing Development program within STMD. Partners supporting Starling’s mission extension include SpaceX of Hawthorne, California, NASA’s Conjunction Assessment Risk Analysis (CARA) program, and the Department of Commerce. SpaceX manages the Starlink satellite constellation and the Collision Avoidance ground system.

      3D-MAT – A thermal protection material for the Artemis Generation
      by Frank Tavares
      The 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT) is a thermal protection material developed as a critical component of Orion, NASA’s newest spacecraft built for human deep space missions. It is able to maintain a high level of strength while enduring extreme temperatures during re-entry into Earth’s atmosphere at the end of Artemis missions to the Moon. 3D-MAT has become an essential piece of technology for NASA’s Artemis campaign that will establish the foundation for long-term scientific exploration at the Moon and prepare for human expeditions to Mars, for the benefit of all.
      On the 19th day of the Artemis I mission, the Moon grows larger in frame as Orion prepares for the return powered flyby on Dec. 5, when it will pass approximately 79 miles above the lunar surface. This image includes both the Orion crew module and service module, connected by the compression pad that utilizes the 3D-MAT material. The 3D-MAT project emerged from a technical problem in early designs of the Orion spacecraft. The compression pad—the connective interface between the crew module, where astronauts reside, and the service module carrying power, propulsion, supplies, and more—was exhibiting issues during Orion’s first test flight, Exploration Flight Test-1, in 2014. NASA engineers realized they needed to find a new material for the compression pad that could hold these different components of Orion together while withstanding the extremely high temperatures of atmospheric re-entry. Using a 3D weave for NASA heat shield materials had been explored, but after the need for a new material for the compression pad was discovered, development quickly escalated.
      This led to the evolution of 3D-MAT, a material woven with quartz yarn and cyanate ester resin in a unique three-dimensional design. The quartz yarn used is like a more advanced version of the fiberglass insulation you might have in your attic, and the resin is essentially a high-tech glue. These off-the-shelf aerospace materials were chosen for their ability to maintain their strength and keep heat out at extremely high temperatures. 3D-MAT is woven together with a specialized loom, which packs the yarns tightly together, and then injected with resin using a unique pressurized process. The result is a high-performance material that is extremely effective at maintaining strength when it’s hot, while also insulating the heat from the spacecraft it is protecting.
      The 3D-MAT thermal protection material.NASA Within three years, 3D-MAT went from an early-stage concept to a well-developed material and has now been integrated onto NASA’s flagship Artemis campaign. The use of 3D-MAT in the Orion spacecraft’s compression pad during the successful Artemis I mission demonstrated the material’s essential role for NASA’s human spaceflight efforts. This development was made possible within such a short span of time because of the team’s collaboration with small businesses including Bally Ribbon Mills, which developed the weaving process, and San Diego Composites, which co-developed the resin infusion procedure with NASA.
      The team behind its development won the NASA Invention of the Year Award, a prestigious honor recognizing how essential 3D-MAT was for the successful Artemis flight and how significant it is for NASA’s future Artemis missions. The inventor team recognized includes Jay Feldman and Ethiraj Venkatapathy from NASA’s Ames Research Center in California’s Silicon Valley, Curt Wilkinson of Bally Ribbon Mills, and Ken Mercer of Dynovas.
      3D-MAT has applications beyond NASA as well. Material processing capabilities enabled by 3D-MAT have led to other products such as structural parts for Formula One racecars and rocket motor casings. Several potential uses of 3D-MAT in commercial aerospace vehicles and defense are being evaluated based on its properties and performance.
      Milestones
      Winner of NASA Invention of the Year Award in 2023 Flown on Artemis I in 2022 Being assessed for use by multiple Department of Defense and commercial aerospace entities Partners
      The 3D-MAT project is led out of NASA Ames with the support of various partners, including Bally Ribbon Mills, NASA’s Johnson Space Center in Houston, and NASA’s Langley Research Center in Hampton, Viginia, with the support of the Game Changing Development Program through NASA’s Space Technology Mission Directorate.

      U.S. President Joe Biden Arrives Aboard Air Force One

      President Biden disembarks Air Force One at Moffett Federal Airfield before departing for a series of events in the region on May 9.NASA photo by Dominic Hart 2023 Presidential Rank & NASA Honor Awards Ceremony Held

      The annual Presidential Rank & NASA Honor Awards Ceremony was held at Ames, and shown virtually, on May 22 in the Ames Auditorium, in N201. Seventy-three employees were selected for individual Presidential and NASA Honor awards and 27 groups were selected for NASA Group Achievement Awards.
      Congratulations to all the recipients. Please see below for the list of awardees.

      2023 Presidential Rank and NASA Honor Award Recipients  
        
      Presidential Rank of Meritorious Senior Executive  
      Michael Hesse 
        
      Distinguished Service Medal 
      Bhavya Lal (A-Suite Nomination) 
      Thomas R. Norman 
      Huy K. Tran 
      2023 Distinguished Service Medal presented to Huy Tran, center, by Center Director Eugene Tu, right, and Deputy Center Director David Korsmeyer, left, in the N201 Auditorium. Diversity, Equity, Inclusion, and Accessibility Medal 
      Dora M. Herrera 
      Parag A. Vaishampayan 
      2023 Diversity, Equity, Inclusion and Accessibility Medal presented to Dora Herrera, center, by Center Director Eugene Tu, right, and Deputy Center Director David Korsmeyer, left, in the N201 Auditorium.NASA photo by Brandon Torres Early Career Achievement Medal 
      Natasha E. Batalha 
      Mirko E. Blaustein-Jurcan 
      Athena Chan 
      Kathryn M. Chapman 
      Chad J. Cleary 
      Christine E. Gregg 
      Supreet Kaur 
      James R. Koch 
      Elizabeth L. Lash 
      Terrence D. Lewis 
      Garrett G. Sadler 
      Meghan C. Saephan 
      Jordan A. Sakakeeny 
      Lauren M. Sanders 
      Amanda M. Saravia-Butler 
      Logan Torres 
      Lauren E. Wibe 
      Shannah N. Withrow 
      Emina Zanacic 
      2023 Early Career Achievement Medal presented to Emina Zanacic, center, by Center Director Eugene Tu, right, and Deputy Center Director David Korsmeyer, left, in the N201 Auditorium.NASA photo by Brandon Torres Exceptional Achievement Medal 
      Lauren J. Abbott 
      Parul Agrawal 
      Steven D. Beard 
      Janet E. Beegle 
      Jose V. Benavides 
      Divya Bhadoria 
      Sergio A. Briceno 
      Holly L. Brosnahan 
      Karen T. Cate 
      Fay C. Chinn 
      William J. Coupe 
      Frances M. Donovan (Langley Research Center Nomination) 
      Diana M. Gentry 
      Lynda L. Haines 
      Pallavi Hegde 
      Shu-Chun Y. Lin 
      Carlos Malpica 
      Jeffrey W. McCandless 
      Joshua D. Monk 
      Mariano M. Perez 
      Nathan J. Piontak (OPS Nomination) 
      Vidal Salazar 
      David W. Schwenke 
      Eric C. Stern 
      2023 Exceptional Achievement Medal presented to David W. Schwenke, center, by Center Director Eugene Tu, right, and Deputy Center Director David Korsmeyer, left, in the N201 Auditorium.NASA photo by Brandon Torres   
      Exceptional Engineering Achievement Medal  
      Joseph L. Rios 
      Mark M. Weislogel 
      Joseph D. Williams 
        
      Exceptional Public Achievement Medal 
      Danielle K. Lopez 
      Wade M. Spurlock 
      Sasha V. Weston 
        
      Exceptional Public Service Medal  
      John J. Freitas (OCOMM Nomination) 
      Michael J. Hirschberg 
        
      2023 Exceptional Public Service Medal presented to John J. Freitas, center, by Center Director Eugene Tu, right, and Deputy Center Director David Korsmeyer, left, in the N201 Auditorium.NASA photo by Brandon Torres Exceptional Scientific Achievement Medal  
      Noah G. Randolph-Flagg 
      Ju-Mee Ryoo 
        
      2023 Exceptional Scientific Achievement Medal presented to Ju-Mee Ryoo, center, by Center Director Eugene Tu, right, and Deputy Center Director David Korsmeyer, left, in the N201 Auditorium.NASA photo by Brandon Torres Exceptional Service Medal  
      Soheila Dianati 
      Robert A. Duffy 
      Shawn A. Engelland 
      Thomas P. Greene 
      Paul W. Lam 
      Bernadette Luna 
      Andres Martinez 
      Ramsey K. Melugin 
      Owen Nishioka 
      Kathryn B. Packard 
      Andrzej Pohorille (Posthumously) 
      Stevan Spremo 
      Mark S. Washington 
      2023 Exceptional Service Medal presented to Andres Martinez, center, by Center Director Eugene Tu, right, and Deputy Center Director David Korsmeyer, left, in the N201 Auditorium.NASA photo by Brandon Torres   
      Exceptional Technology Achievement Medal  
      Ruslan Belikov 
      Norbert P. Gillem 
      Emre Sozer 
        
      Outstanding Leadership Medal  
      Michael D. Barnhardt 
      William N. Chan 
      Marilyn Vasques 
        
      Silver Achievement Medal  
      Christine L. Munroe (MSEO – OSBP Nomination) 
      Juan L. Torres-Pérez (Langley Research Center Nomination) 
      2023 Silver Achievement Medal presented to Christine L. Munroe, center, by Center Director Eugene Tu, right, and Deputy Center Director David Korsmeyer, left, in the N201 Auditorium.NASA photo by Brandon Torres   
      Group Achievement Award  
      ARCTIC 3 Simulation Team 
      Artemis I Char Loss Anomaly Investigation Team 
      CapiSorb Visible System Team 
      Center Engagement Strategy 
      Convective Processes Experiment-AW and -CV 
      Design for Maintainability 
      DIP Planning and Field Test Team 
      Executive Wildfire Roundtable and Showcase 
      Flight IACUC 
      Long Static Pipe Manufacturing Team 
      Moon to Mars SE&I Verification Compliance Tool 
      N225 Arc Flash Mishap Investigation Team 
      NASA Aeronautics Sample Recovery Helicopter Team 
      NASA Ames SLS CFD Team 
      Next Generation Life Sciences Data Archive Team 
      OSHA VPP Recertification Team 
      Planetary Aeolian Laboratory ROSES Proposal Team 
      SOFIA Project Closeout Team 
      Submesoscale Ocean Dynamics Experiment (S-MODE) 
      The ACCLIP Team 
      The DCOTSS Team 
      The IMPACTS Team 
      The Meteorological Measurement System (MMS) 
      UAM eVTOL Vehicle Design and Analysis Team 
      UAM Side-by-Side 2 Aeroperformance Test Team 
      Western Diversity Time Series Data Collection Team 
      Wide Field of View 

      Ames Veterans Community Outreach Team Receives Federal Employee of the Year Award
      by Maria C. Lopez
      As part of the Ames Veterans Committee (AVC) employee resource group, Brad Ensign, and James Schwab, who are both Army veterans, work to support other veterans and our local Afghan and Ukrainian war refugee communities. The fall of Afghanistan to the Taliban was especially heart wrenching for Afghan war veterans and created a feeling of discouragement. The war in Ukraine only increased the level of disheartenment for many veterans. Importantly, the Ames Veterans Committee provides a forum to help veterans heal, and just as importantly, help our local community deal with the influx of Afghan and Ukrainian war refugees. 
      The Federal Employee of the Year Award was presented to (left to right) James Schwab, NASA Ames Veteran Committee (AVC); Brad Ensign, NASA AVC by Commander (CDR) Matthew Johns, MPH, Chair of the San Francisco Federal Executive Board and Regional Health Administrator, U.S. Department of Health and Human Services. Through the AVC Community Outreach Team, Brad Ensign coordinated to donate computers from the Ledios company, which is NASA’s Workplace & Collaboration Services to The Jewish Family & Community Services – East Bay and The Jewish Family Services of Silicon Valley. Leidos was awarded the Advanced Enterprise Global Information Technology Solutions (AEGIS) contract by NASA. In addition to AEGIS, Leidos provides enterprise IT services to NASA through the NASA End-User Services and Technologies (NEST) contract. Both contracts support NASA’s overall IT operation and mission. Once an end-user computer reaches the device’s end-of-life cycle per the NEST contract, the computers are repurposed for local charity use. The computers are verified to be in good working condition by the Leidos/NEST team. 
      Brad Ensign periodically pings the Ames NEST Center Operations manager for available computer donations and the manager verifies that good working computers are available for donation. Brad then contacts various Afghan and Ukrainian war refugee assistance charities to determine their computer needs. Many of these local charities rely on donations and do not have an IT budget. Once a need is determined by local charities, Brad coordinates the number of computers available and a delivery date and time. James Schwab enthusiastically supports this effort and has provided incredible logistical support transporting the computers to the donation location.
      Notably in October 2023, Brad and James successfully delivered 25 laptop computers, five desktop computers, and 30 monitors to the Jewish Family & Community Services – East Bay. 
      The support for the Jewish Family & Community Services continued and in December of 2023, Brad helped deliver groceries to Afghan war refugees. So far this year, Brad, James, the Ledios company, and the NASA Ames Veterans Committee have donated a total of 40 computers and 40 monitors. These computers are extremely helpful for Afghan and Ukrainian war refugees to write resumes, find jobs, communicate with loved ones left behind, assist with personal tasks, stay informed of world and local news, help their children with schoolwork, and for entertainment. Donated computers are a tremendous resource for local war refugees and this initiative helps NASA Ames Veterans ease feelings of distress by making a difference in their community. 
      On May 9, 2024, Brad and James received a Federal Employee of the Year Award from the San Francisco Federal Executive Board (SFFEB) for Volunteer Excellence based on their leadership on creating opportunities for the Ames Veterans Committee to work together during a trying time for veterans while making an ongoing, positive impact in the local community. 

      DC-8 Flying Laboratory Makes Farewell Flight Over Ames Prior to Retirement

      NASA Ames gets an up-close look at the NASA DC-8 Flying Laboratory’s final flyover at 11:17 a.m. PDT on Wednesday, May 15, prior to it’s retirement at Idaho State University in Pocatello, IdahoNASA photo by Brandon Torres After nearly 40 years of service to science, on May 15 the Ames community had a chance to bid a final farewell to the DC-8 Flying Laboratory as it made its way to retirement in Idaho. NASA Ames, in coordination with NASA Armstrong, had arranged for a low-pass flyover of Ames Research Center at approximately 11:10 a.m. PDT in honor of the staff, scientists, and engineers who enabled the DC-8 to make such a profound impact on Earth science around the globe.  
      The History of Ames and the DC-8
      The NASA DC-8 is a world-class flying laboratory that has played a crucial role in answering fundamental questions across nearly every scientific discipline exploring Earth’s interacting systems, and how they are changing. The versatile research aircraft was unprecedented for its ability to carry multiple instruments and thereby take simultaneous active, passive, and in-situ measurements, while also providing room for 42 investigators onboard and boasting an impressive range of more than 5,000 miles.  
      Ames has been involved in the science operations of the DC-8 since its arrival at Moffett Field in 1987, including long after the aircraft moved to NASA Armstrong (then NASA Dryden) in the late 1990s. Scientists at Ames continued to lead air quality and climate investigations. The Earth Science Project Office (ESPO) managed complex DC-8 deployments all over the world. And the National Suborbital Research Center (NSRC) provided critical engineering for instrument integration and the upgrading of onboard IT systems and networks, providing global satellite communications to enable real-time science anywhere in the world. 
      During its first scientific mission, the DC-8 helped to establish the primary cause of the ozone hole over the southern Pacific. Other early missions focused on atmospheric science and developing new instruments for remote sensing. This work ultimately led to the upcoming  NASA-ISRO Synthetic Aperture Radar (NISAR) mission, launching later this year, which will provide new insights into Earth’s processes.  
      The DC-8 went on to provide calibration and validation for numerous satellite missions, including the Total Ozone Mapping Spectrometer (TOMS) series of missions and later for the Aura satellite. The DC-8 also provided critical measurements over both poles as part of Operation IceBridge.
      The DC-8 successfully completed its final mission in March of this year, flying atmospheric sampling instruments for the Airborne and Satellite Investigation of Asian Air Quality (ASIA-AQ) campaign. Over the last decade, the DC-8 has also served an important role in training the next generation of Earth scientists and engineers through the Student Airborne Research Program (SARP).
      As we bid farewell to this special aircraft, the DC-8 has cleared the runway for the next generation of flying laboratory: the B777. A study performed by the National Academies of Science and Medicine strongly endorsed the need for a NASA flying laboratory to replace the DC-8, resulting in the acquisition of the B777. The team at Ames is working together with NASA Langley and NASA HQ to ensure the B777 will continue to support the science community and exceed the capabilities of the DC-8 with longer range, endurance, and payload capacity: honoring and expanding its legacy for generations of scientists to come.  

      Hangar 3 Historical Website is Now Live!

      The Historic Preservation Office at NASA Ames’ Hangar 3 historical web site is now live!  Ames Research Center and Planetary Ventures, in consultation with the National Park Service, California State Historic Preservation Office, and the Advisory Council on Historic Preservation created a website and film that documents the history and features of Hangar 3, provides valuable information for future researchers, and celebrates its local and global impact.
      Hangar 3 at Moffett Field You also can find additional historical information at NASA Ames and Moffett Field here, including buildings and districts listed in the National Register of Historic Places, information about Hangar 1 and Hangar 3, historical resources associated with the Space Shuttle and NASA Ames, and much more!

      In Memoriam …

      Fred Martwick, Senior Engineer at Ames, Passes Away
      It is with great sadness we share with you the news that our good friend and colleague, Fred G. Martwick, passed away on April 29, 2024, after a brief illness. A Celebration of Life service will be held on Tuesday, June 11, at 1 p.m. at the Calvary Church, 16330 Los Gatos Blvd, Los Gatos, California 95032.  The event is open to all who wish to attend.  In addition, everyone is invited to a flag ceremony to honor Fred on Tuesday, June 25, at 10:30 a.m. PDT in front of the N-200 flagpole at NASA Ames.
      Fred Martwick hiking in the High Sierras. Graduating in 1985 with a BS in mechanical engineering from San Jose State, Fred began his career with IBM in south San Jose.  After a few years, he came on-board at NASA Ames as a support service contractor in the Engineering Division. His abilities and personal work ethic were recognized, and he was quickly recruited for civil service (CS) conversion, first becoming an Army CS employee in the early 1990s, and later transitioning to NASA CS.
      In the 1990s, Fred supported and then led several successful space sciences projects.  Concurrently, he served as one of the Ames representatives of the Aerospace Mechanisms Symposium organizing committee, consisting of representatives from the other NASA centers and Lockheed Martin. This group organized and sponsored the symposium on a set rotation within the NASA centers. 
      In the late 1990s, after an offsite contractor failed to meet NASA’s specifications and timeline, the successful partnership of Fred and Dave Ackard managed the onsite manufacture and assembly of the SOFIA Cavity Door.  In the 2000s, Fred managed the planning, design, and prototype fabrication of a nano-satellite and deployment system in conjunction with Stanford.  Fred then managed the challenging procurement and fabrication of an intricate powered wind tunnel model of the Orion Crew Escape System.  The model and subsequent tests were key elements for the analysis test verification of the Escape System.
      In the 2010s, Fred had established an intricate manufacturing documentation control system, creating a contracting “war room” in the mezzanine above the N211 Fabrication Shop.  From here, large amounts of space flight certified animal hardware were planned, contracted, tracked, assembled, and certified for flight to the International Space Station.  Fred’s procurement and documentation control system greatly impressed visiting customers from NASA/JSC management. In 2014, Fred was awarded the coveted Silver Snoopy Award in recognition of his outstanding performance in space flight system development and manufacturing.
      By the 2020s, Fred had moved to the Chief Engineers Office in Code D supporting project oversight while keeping an eye on his upcoming retirement.  Fred’s dedication to NASA had pushed his retirement out a few times but was well within sight with the purchase of a beautiful home near Spokane, Washington. He was very involved with the organization Assist International and enjoyed working with the project Caminul Felix in Romania. Additionally, he worked with the Calvary Church ministry with junior high school kids. He was bus driver for the kids at the ministry, taking them to Hume Lake Christian Camp where he was the waterskiing boat driver for the kids as they waterskied behind the boat around the lake.
      Fred will be greatly missed by the many people who have worked with him over his 30 plus years of outstanding service.  He will be remembered as a man of unwavering faith, a shrewd negotiator, an excellent project manager and systems engineer capable of diving into and clearly documenting the details while not losing sight of the big picture.  His ability to “get things done” makes his passing a great loss for NASA.
      All of Fred’s many friends from his NASA family are welcome to attend the memorial service and flag ceremony.
      View the full article
    • By NASA
      Launching a Pair of Earth-Observing Small Satellites on This Week @NASA – May 31, 2024
    • By Space Force
      The update maximizes opportunities for Airmen and Guardians to reenlist by allowing them to do so up to 12-months before their expiration term of service, giving them more time to decide to reenlist.
      View the full article
    • By European Space Agency
      Week in images: 27-31 May 2024
      Discover our week through the lens
      View the full article
    • By NASA
      25 Min Read The Marshall Star for May 29, 2024
      More to Marshall: Center Leadership Provides Updates During Spring All-Hands Meeting
      By Wayne Smith
      NASA’s Marshall Space Flight Center will celebrate its 65th birthday next summer, and while there are plans to honor the center’s rich history, there is also More to Marshall ahead.
      Team members at NASA’s Marshall Space Flight Center listen to Center Director Joseph Pelfrey, background center, share updates on culture and strategy during the spring all-hands meeting May 20 in Activities Building 4316. NASA/Danielle Burleson That was part of the message Center Director Joseph Pelfrey delivered during the spring all-hands meeting May 20 in Activities Building 4316. He highlighted Marshall’s transformative shift to more strategic partnerships across NASA and with industry, with the center continuing to serve as a technical solutions provider.
      “More to Marshall is a systematic approach that will reinforce our center’s strategy and our role in space exploration,” Pelfrey said. “We align this vision with the core values of our Marshall fabric. We are not replacing our roots; we are fostering them to grow stronger and reach farther.”
      Pelfrey also discussed the center’s evolving culture, highlighting April outreach activities, including the Total Solar Eclipse event in Russellville, Arkansas, First Robotics, Student Launch, and the Human Exploration Rover Challenge.
      Marshall Deputy Director Rae Ann Meyer, second from right, responds to an audience question during a question-and-answer panel the May 20 all-hands meeting. At left, Lance D. Davis, Marshall’s public affairs and news chief, moderates the panel, while Pelfrey, center left, and Larry Leopard, Marshall’s associate director, technical, far right, listen in.NASA/Danielle Burleson “These events emulate the Marshall culture,” Pelfrey said. “I am proud of the impact you have on the community, the Artemis Generation, and across the globe.”
      New Deputy Director Rae Ann Meyer followed Pelfrey’s opening remarks, focusing on the center’s newest culture initiatives. Meyer also invited Trace Turner, management assistant in the Office of the Director, to highlight the efforts of three Center Action Teams leading the charge on Marshall’s culture initiatives. Team leaders Rocio Garcia, Benjamin Ferrell, and Mason Quick each shared more about their respective team’s projects, including the development of a user-friendly app that will share information on Marshall, NASA’s Michoud Assembly Facility, Redstone Arsenal, and the community.
      Larry Leopard, Marshall’s associate director, technical, provided an update on the center’s efforts to address knowledge management concerns, starting with events like Meals with Mentors, Center Strategy Brown Bags and Tech Talk presentations, and after-action reviews.
      Center Action Team leader Rocio Garcia shares plans to develop a user-friendly app for Marshall team members and the public, which will serve as a one-stop shop for information on Marshall, NASA’s Michoud Assembly Facility, Redstone Arsenal, and the community.NASA/Danielle Burleson Finally, before Marshall leadership participated in a question-and-answer panel, Pelfrey shared updates on center strategy, infrastructure, NASA’s budget, and NASA 2040.
      “We will build on the success of our center strategy,” Pelfrey said. “We will continue to implement and mature our pursuits culture, always seeking challenging and exciting opportunities, using our skills, expertise, capabilities, and infrastructure while continuing to build partnerships with industry and academia. Marshall has a tremendous role in returning humans to the Moon, reaching Mars, and exploring the cosmos.”
      Team members can watch a recording of the all-hands meeting on Inside Marshall.
      Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.
      › Back to Top
      Les Johnson Named Center Chief Technologist at Marshall
      Les Johnson has been named center chief technologist at NASA’s Marshall Space Flight Center, effective June 2.
      Johnson will provide expert advice on technology initiatives to center leadership and to Marshall team members. He will lead the Marshall team on matters involving center-wide technology development. Johnson also will represent Marshall on NASA’s Center Technology Council and serves as the center’s focal point for Center Innovation Fund activities.
      Les Johnson has been named center chief technologist at NASA’s Marshall Space Flight Center.NASA He has been a principal technologist for several of NASA’s advanced in-propulsion and power technology developments during his 33-year career at Marshall. Johnson served as the principal investigator of the Propulsive Small Expendable Deployer System (ProSEDS) tether propulsion project and Near-Earth Asteroid Scout solar sail mission. He was a co-investigator (Co-I) of the JAXA T-Rex tether propulsion demonstration, the European Union’s InflateSail, and NASA’s Lightweight Integrated Solar Array and anTenna (LISA-T) missions, as well as a Co-I on multiple NASA Innovative Advanced Concepts (NIAC) studies.
      Johnson began his NASA career in 1990 working in the Program Development Directorate formulating new space science mission concepts. Shortly thereafter, he became the manager for NASA’s Interstellar Propulsion Technology Project that transitioned into the In-Space Propulsion Technology Program, which he managed on behalf of the Office of Space Science. He then served as the formulation manager for the Nuclear Systems Initiative, which became Project JIMO. Johnson served as deputy manager and technical assistant for the Advanced Concepts Office, before being selected to lead the development of the Solar Cruiser solar sail propulsion system in the Science and Technology Office.
      Prior to NASA, he worked three years for General Research Corp. on directed energy systems in support of the Strategic Defense Initiative.
      Johnson holds three patents. His awards include NASA’s Exceptional Technology Achievement Medal, NASA’s Exceptional Achievement Medal (twice), Marshall’s Technology Transfer and Innovation Awards, and he has been a Rotary Stellar Award finalist two times. As an outside activity, he is also an award-winning author.
      A native of Ashland, Kentucky, Johnson earned his bachelor’s degree from Transylvania University and his master’s degree from Vanderbilt University.
      › Back to Top
      Take 5 with Jose Matienzo
      By Wayne Smith
      Growing up in the small village of Luquillo, Puerto Rico, Jose Matienzo would fly paper airplanes and launch model rockets from atop the building he lived in with his family.
      “I knew then that I wanted to be some sort of engineer, I just didn’t know what it was called,” Matienzo said. “I never imagined that I actually would work for NASA, but I thought I could design cars or planes. I liked drawing them.”
      Jose Matienzo began his NASA career in 1983 at the agency’s Marshall Space Flight Center.Photo courtesy of Jose Matienzo Flash forward more than five decades later. Matienzo is in his 42nd year working with NASA and the agency’s Marshall Space Flight Center as he nears retirement in December. Center team members will remember him as manager of the Marshall Exchange for the past 12 years, enjoying his witty daily email from the Exchange.
      “Literally every day was fun trying to make life better for our team members,” Matienzo said of his team with the Exchange. “That includes bringing the food truck court, being able to have employee clothing of all styles and types, creating new clubs, and expanding facilities.”
      He is currently assigned to a position with NASA’s Source Evaluation Board.
      As he approaches retirement, Matienzo still finds it difficult to fathom his many milestones working with NASA and Marshall, where he began his career in 1983 as a co-op student in the structural dynamics division and worked on the Space Shuttle Program for 12 years. Matienzo followed that with a year at NASA Headquarters before returning to Marshall as lead engineer on several projects related to the International Space Station, such as the space station element transportation system.
      His other assignments have included managing the NASA office at the Naval Research Center; the Marshall lead for supporting the Launch Services Program, including the office at the United Launch Alliance rocket plant in Decatur; technical assistant for former Marshall Director Robert Lightfoot; and more. 
      “There have been so many memories over the years,” Matienzo said. “Six months after becoming a full-time employee, the Challenger accident happened. At the time I had no idea what the possible impact of that accident would be. We all had a little part on returning to flight, so watching the first launch afterwards was a fantastic moment.
      “We delivered space station hardware in partnership with the Italians and the European Space Agency, helped train the astronauts who performed the Hubble Telescope repair, and most recently, we made improvements to the Exchange services to make life at work better for our employees.”
      Question: What excites you most about the future of human space exploration, or your NASA work, and your team’s role it?
      Matienzo: I’ve been here for a long time and our future missions and goals have changed over the years. But no matter what, there’s always been excitement about meeting the agency’s goals and Marshall’s role in providing space transportation, lunar landers, and even Mars sample return vehicles. That and all of the support and testing work that comes with it is fun! 
      Question: Who or what drives/motivates you?
      Matienzo: I’ve been lucky that my job assignments have always been fun and self-motivating, but certainly dealing and coordinating with colleagues in accomplishing a mutual goal, test, or assignment is very rewarding.
      Question: What advice do you have for employees early in their NASA career or those in new leadership roles?
      Matienzo: Network! As you get to know others and learn what they do, you will find out how everything comes together at NASA and where other opportunities may be out there for you. For our leaders: keep encouraging, mentoring, and creating opportunities for the employees to experience, learn, and grow.
      Question: What do you enjoy doing with your time while away from work?
      Matienzo: My kids are older now so keeping in touch is fun. But I do have grandkids to play with. Otherwise, I play congas with my bandmates, love to do social dancing, play lots of pickleball, and enjoy mountain and road bike riding.
      Question: What plans do you have for retirement?
      Matienzo: I want to move closer to the beach. I love Huntsville, so I want to keep a presence here. I also plan to bike all over the USA!
      Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.
      › Back to Top
      Marshall Team Supports Safe Travels for Space Station Science
      By Jessica Barnett 
      During the International Space Station’s more than 25 years of operation, there have been more than 3,000 experiments conducted aboard the microgravity laboratory, and making sure scientific samples are kept safe through launch, spaceflight, experimentation, and the return trip to Earth takes a great deal of planning, testing, and preparation across NASA.
      In February, team members at NASA’s Marshall Space Flight Center handled the de-integration of zinc selenide-based crystals grown on the space station as part of an experiment to study how a lack of gravity might affect the crystals’ growth and structure. The experiment was conducted using six sample cartridge assemblies heated up to 1,200 degrees Celsius (2,192 degrees Fahrenheit) inside the Materials Science Laboratory of the Materials Science Research Rack on the space station.
      NASA Marshall Space Flight Center’s payload technician Chris Honea, left, and quality assurance specialist Keith Brandon, right, on Feb. 29 carefully inspect the temperature sensors that help gather data and monitor progress during a crystals experiment. The zinc selenide-based crystals were grown on the International Space Station as part of an experiment to see how gravity affects their structure or growth, then de-integrated and inspected in Marshall’s Space Systems Integration & Test Facility.NASA John Luke Bili, lead systems test engineer for the sample cartridge assemblies within Marshall’s Instrument Development, Integration, and Test Branch, begins the process by working with engineers, scientists, project personnel, and the experiment’s principal investigator to create an ampoule, or sealed glass vial, to use as a sample container.
      “We’ll take the ampoule and do some ground testing, like a normal flight integration,” Bili said. “We’ll assemble it with the hardware we have, then we are responsible for completing different mitigation efforts to prepare for sealing the ampoule up and processing it at the required high temperatures.”
      The team exposes the test article to extreme heat and pressure using a duplicate of the furnace on the space station, allowing them to also test the experiment’s software.
      The zinc selenide-based crystal experiment required six sample cartridge assemblies. After a month of preparation from Marshall’s team, the assemblies traveled to NASA’s Johnson Space Center for a final round of packing before arriving at the agency’s Kennedy Space Center for launch.
      The assemblies launched on NASA’s SpaceX 24th commercial resupply services mission in December 2021 and NASA’s Northrop Grumman 19th commercial resupply services mission in August 2023. Each sample took about a week to process through the space station’s lab furnace. The samples were then brought back to Earth, with three of the six arriving at Marshall on Feb. 9.
      An ampoule containing zinc selenide-based crystals rests on a table in Marshall Space Flight Center’s Space Systems Integration & Test Facility. The ampoule was part of the sixth sample cartridge assembly retrieved from the International Space Station as part of an experiment to see how gravity affects the crystals’ structure or growth.NASA While unpacking the crystal samples, team members took photos and notes of the tubes throughout the de-integration process in Marshall’s Space Systems Integration & Test Facility. The team includes technicians with 20 to 30 years of experience, ensuring samples safely travel to and from the station and helping expand access for researchers to explore microgravity, space exposure, and future missions in low Earth orbit.
      “It’s really nice having that kind of experience when we’re working on the hardware that’s going in space,” he said. “We’ve got a lot of people that are very skilled machinists that are able to help us in a moment’s notice, we have people with a really good understanding of technical tolerances and stuff like that, and we have people with a lot of varying experience doing flight hardware integration and tests.”
      For more than two decades, humans have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit.
      Learn more about the space station.
      Barnett, a Media Fusion employee, supports the Marshall Office of Communications.
      › Back to Top
      Spotted: ‘Death Star’ Black Holes in Action
      A team of astronomers have studied 16 supermassive black holes that are firing powerful beams into space, to track where these beams, or jets, are pointing now and where they were aimed in the past, as reported in a press release. Using NASA’s Chandra X-ray Observatory and the U.S. National Science Foundation (NSF) National Radio Astronomical Observatory’s (NRAO) Very Large Baseline Array (VLBA), they found that some of the beams have changed directions by large amounts.
      These two Chandra images show hot gas in the middle of the galaxy cluster Abell 478, left, and the galaxy group NGC 5044, right.X-ray: NASA/CXC/Univ. of Bologna/F. Ubertosi; Insets Radio: NSF/NRAO/VLBA; Wide field Image: Optical/IR: Univ. of Hawaii/Pan-STARRS; Image Processing: NASA/CXC/SAO/N. Wolk These two Chandra images show hot gas in the middle of the galaxy cluster Abell 478 (left) and the galaxy group NGC 5044 (right). The center of each image contains one of the sixteen black holes firing beams outwards. Each black hole is in the center of a galaxy embedded in the hot gas.
      In the images below, labels and the radio images appear. Ellipses show a pair of cavities in the hot gas for Abell 478, left, and ellipses show two pairs of cavities for NGC 5044, right. These cavities were carved out by the beams millions of years ago, giving the directions of the beams in the past. An X shows the location of each supermassive black hole.
      The VLBA images are shown as insets, which reveal where the beams are currently pointing, as seen from Earth. The radio images are both much smaller than the X-ray images. For Abell 478 the radio image is about 3% of the width of the Chandra image and for NGC 5044 the radio image is about 4% of the Chandra image’s width.
      A labeled version of the image.X-ray: NASA/CXC/Univ. of Bologna/F. Ubertosi; Insets Radio: NSF/NRAO/VLBA; Wide field Image: Optical/IR: Univ. of Hawaii/Pan-STARRS; Image Processing: NASA/CXC/SAO/N. Wolk A comparison between the Chandra and VLBA images shows that the beams for Abell 478 changed direction by about 35 degrees and the beams for NGC 5044 changed direction by about 70 degrees.
      Across the entire sample the researchers found that about a third of the 16 galaxies have beams that are pointing in completely different directions than they were before. Some have changed directions by nearly 90 degrees in some cases, and over timescales between one million years and a few tens of millions of years. Given that the black holes are of the order of 10 billion years old, this represents a relatively rapid change for these galaxies.
      Black holes generate beams when material falls onto them via a spinning disk of matter and some of it then gets redirected outward. The direction of the beams from each of these giant black holes, which are likely spinning, is thought to align with the rotation axis of the black hole, meaning that the beams point along a line connecting the poles.
      These beams are thought to be perpendicular to the disk. If material falls towards the black holes at a different angle that is not parallel to the disk, it could affect the direction of the black hole’s rotation axes, changing the direction of the beams.
      Wide field views of Abell 478, left, and NGC 5044, right.X-ray: NASA/CXC/Univ. of Bologna/F. Ubertosi et al.; Optical/IR: Univ. of Hawaii/Pan-STARRS; IR: NASA/ESA/JPL/CalTech/Herschel Space Telescope Scientists think that beams from black holes and the cavities they carve out play an important role in how many stars form in their galaxies. The beams pump energy into the hot gas in and around the galaxy, preventing it from cooling down enough to form huge numbers of new stars. If the beams change directions by large amounts, they can tamp down star formation across much larger areas of the galaxy.
      The paper describing these results was published in the January 20th, 2024 issue of The Astrophysical Journal, and is available here. The authors are Francesco Ubertosi (University of Bologna in Italy), Gerritt Schellenberger (Center for Astrophysics | Harvard & Smithsonian), Ewan O’Sullivan (CfA), Jan Vrtilek (CfA), Simona Giacintucci (Naval Research Laboratory), Laurence David (CfA), William Forman (CfA), Myriam Gitti (University of Bologna), Tiziana Venturi (National Institute of Astrophysics—Institute of Radio Astronomy in Italy), Christine Jones (CfA), and Fabrizio Brighenti (University of Bologna).
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      › Back to Top
      NASA, IBM Research to Release New AI Model for Weather, Climate
      By Jessica Barnett
      Working together, NASA and IBM Research have developed a new artificial intelligence model to support a variety of weather and climate applications. The new model – known as the Prithvi-weather-climate foundational model – uses artificial intelligence (AI) in ways that could vastly improve the resolution we’ll be able to get, opening the door to better regional and local weather and climate models.  
      Foundational models are large-scale, base models which are trained on large, unlabeled datasets and can be fine-tuned for a variety of applications. The Prithvi-weather-climate model is trained on a broad set of data – in this case NASA data from NASA’s Modern-Era Retrospective analysis for Research and Applications (MERRA-2)– and then makes use of AI learning abilities to apply patterns gleaned from the initial data across a broad range of additional scenarios.  
      With the Prithvi-weather-climate foundational model, researchers will be able to support many climate applications that can be used throughout the science community. These applications include detecting and improving models for severe weather patterns or natural disasters such as hurricanes. NASA’s Terra satellite acquired this image of Idalia in August 2023. NASA Earth Observatory “Advancing NASA’s Earth science for the benefit of humanity means delivering actionable science in ways that are useful to people, organizations, and communities. The rapid changes we’re witnessing on our home planet demand this strategy to meet the urgency of the moment,” said Karen St. Germain, director of the Earth Science Division of NASA’s Science Mission Directorate. “The NASA foundation model will help us produce a tool that people can use: weather, seasonal and climate projections to help inform decisions on how to prepare, respond and mitigate.”  
      With the Prithvi-weather-climate model, researchers will be able to support many different climate applications that can be used throughout the science community. These applications include detecting and predicting severe weather patterns or natural disasters, creating targeted forecasts based on localized observations, improving spatial resolution on global climate simulations down to regional levels, and improving the representation of how physical processes are included in weather and climate models.
      “These transformative AI models are reshaping data accessibility by significantly lowering the barrier of entry to using NASA’s scientific data,” said Kevin Murphy, NASA’s chief science data officer, Science Mission Directorate at NASA Headquarters. “Our open approach to sharing these models invites the global community to explore and harness the capabilities we’ve cultivated, ensuring that NASA’s investment enriches and benefits all.” 
      Prithvi-weather-climate was developed through an open collaboration with IBM Research, Oak Ridge National Laboratory, and NASA, including the agency’s Interagency Implementation and Advanced Concepts Team (IMPACT) at NASA’s Marshall Space Flight Center. 
      Prithvi-weather-climate can capture the complex dynamics of atmospheric physics even when there is missing information thanks to the flexibility of the model’s architecture. This foundational model for weather and climate can scale to both global and regional areas without compromising resolution. 
      “This model is part of our overall strategy to develop a family of AI foundation models to support NASA’s science mission goals,” said Rahul Ramachandran, who leads IMPACT at Marshall. “These models will augment our capabilities to draw insights from our vast archives of Earth observations.”  
      Prithvi-weather-climate is part of a larger model family– the Prithvi family – which includes models trained on NASA’s Harmonized LandSat and Sentinel-2 data. The latest model serves as an open collaboration in line with NASA’s open science principles to make all data accessible and usable by communities everywhere. It will be released later this year on Hugging Face, a machine learning and data science platform that helps users build, deploy, and train machine learning models. 
      “The development of the NASA foundation model for weather and climate is an important step towards the democratization of NASA’s science and observation mission,” said Tsendgar Lee, program manager for NASA’s Research and Analysis Weather Focus Area, High-End Computing Program, and Data for Operation and Assessment. “We will continue developing new technology for climate scenario analysis and decision making.” 
      Along with IMPACT and IBM Research, development of Prithvi-weather-climate featured significant contributions from NASA’s Office of the Chief Science Data Officer, NASA’s Global Modeling and Assimilation Office at Goddard Space Flight Center, Oak Ridge National Laboratory, the University of Alabama in Huntsville, Colorado State University, and Stanford University. 
      Learn more about Earth data and previous Prithvi models.
      Barnett, a Media Fusion employee, supports the Marshall Office of Communications.
      › Back to Top
      Psyche Fires Up Its Sci-Fi-Worthy Thrusters
      NASA’s Psyche spacecraft passed its six-month checkup with a clean bill of health, and there’s no holding back now. Navigators are firing its futuristic-looking electric thrusters, which emit a blue glow, nearly nonstop as the orbiter zips farther into deep space.
      The spacecraft launched from NASA’s Kennedy Space Center atop a SpaceX Falcon Heavy on Oct. 13, 2023. After leaving Earth’s atmosphere, Psyche made the most of its rocket boost and coasted beyond the orbit of Mars.
      For the next year, the spacecraft will be in what mission planners call “full cruise” mode, when its electric thrusters take over and propel the orbiter toward the asteroid belt. The thrusters work by expelling charged atoms, or ions, of xenon, emitting a brilliant blue glow that trails behind the spacecraft.
      This artist’s concept depicts NASA’s Psyche spacecraft headed to the metal-rich asteroid Psyche in the main asteroid belt between Mars and Jupiter. The spacecraft launched in October 2023 and will arrive at its destination in 2029.NASA/JPL-Caltech/ASU They are part of Psyche’s incredibly efficient solar electric propulsion system, which is powered by sunlight. The thrust created by the ionized xenon is gentle, but it does the job. Even in full cruise mode, the pressure exerted by the thrusters is about what you’d feel holding three quarters in your hand.
      The orbiter is now more than 190 million miles away and moving at a clip of 23 miles per second, relative to Earth. That’s about 84,000 mph. Over time, with no atmospheric drag to slow it down, Psyche will accelerate to speeds of up to 124,000 mph.
      The spacecraft will arrive at the metal-rich asteroid Psyche in 2029 and will make observations from orbit for about two years. The data it collects will help scientists better understand the formation of rocky planets with metallic cores, including Earth. Scientists have evidence that the asteroid, which is about 173 miles across at its widest point, may be the partial core of a planetesimal, the building block of an early planet.  
      The flight team used Psyche’s first 100 days in space to conduct a full checkout of all spacecraft systems. All of the engineering systems are working just as expected, and the three science instruments have been operating without a hitch. The magnetometer is working so well that it was able to detect an eruption of charged particles from the Sun, as did the gamma-ray and neutron spectrometer. And this past December, the twin cameras on the imaging instrument captured their first images.
      This photo captures an operating electric thruster identical to those being used to propel NASA’s Psyche spacecraft. The blue glow comes from the charged atoms, or ions, of xenon.NASA/JPL-Caltech “Until this point, we have been powering on and checking out the various pieces of equipment needed to complete the mission, and we can report they are working beautifully,” said Henry Stone, Psyche project manager at NASA’s Jet Propulsion Laboratory, which manages the mission. “Now we are on our way and looking forward to an upcoming close flyby of Mars.”
      That’s because the spacecraft’s trajectory will bring it back toward the Red Planet in the spring of 2026. The spacecraft will power down the thrusters as it coasts toward Mars, using the planet’s gravity to slingshot itself out. From there, the thrusters return to full cruise mode. Next stop: the asteroid Psyche.
      In the meantime, the Deep Space Optical Communications technology demonstration aboard the spacecraft will keep on testing its mettle. The experiment already surpassed expectations when, in April, it transmitted test data from over 140 million miles away at a rate of 267 megabits per second to a downlink station on Earth – a bit rate comparable to broadband internet download speeds.
      Arizona State University leads the Psyche mission. A division of Caltech in Pasadena, JPL is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis.
      JPL manages DSOC for the Technology Demonstration Missions program within NASA’s Space Technology Mission Directorate and the Space Communications and Navigation program within the Space Operations Mission Directorate.
      Psyche is the 14th mission selected as part of NASA’s Discovery Program, which is managed by the agency’s Marshall Space Flight Center. NASA’s Launch Services Program, based at Kennedy, managed the launch service.
      › Back to Top
      NASA’s OSIRIS-APEX Unscathed After Searing Pass of Sun
      Mission engineers were confident NASA’s OSIRIS-APEX (Origins, Spectral Interpretation, Resource Identification – Apophis Explorer) spacecraft could weather its closest ever pass of the Sun on Jan. 2. Their models had predicted that, despite traveling 25 million miles closer to the heat of the Sun than it was originally designed to, OSIRIS-APEX and its components would remain safe.
      The mission team confirmed that the spacecraft indeed had come out of the experience unscathed after downloading stored telemetry data in mid-March. The team also tested OSIRIS-APEX’s instruments in early April, once the spacecraft was far enough from the Sun to return to normal operations. Between December 2023 and March, OSIRIS-APEX was inactive, with only limited telemetry data available to the team on Earth.
      Both these images from a camera called StowCam aboard OSIRIS-APEX show the same view taken six months apart, before, left, and after, right, the Jan. 2, 2024, perihelion. Notably, there is no observable difference on spacecraft surfaces, a good indication that the higher temperatures faced during perihelion didn’t alter the spacecraft. Another insight gleaned from the identical view in the two images is that the camera’s performance was also not affected by perihelion. NASA/University of Arizona/Lockheed Martin The spacecraft’s clean bill of health was due to creative engineering. Engineers placed OSIRIS-APEX in a fixed orientation with respect to the Sun and repositioned one of its two solar arrays to shade the spacecraft’s most sensitive components during the pass.
      The spacecraft is in an elliptical orbit around the Sun that brings it to a point closest to the Sun, called a perihelion, about every nine months. To get on a path that will allow it to meet up with its new target Apophis in 2029, the spacecraft’s trajectory includes several perihelions that are closer to the Sun than the spacecraft’s components were originally designed to withstand.
      “It’s phenomenal how well our spacecraft configuration protected OSIRIS-APEX, so I’m really encouraged by this first close perihelion pass,” said Ron Mink, mission systems engineer for OSIRIS-APEX, based at NASA’s Goddard Space Flight Center.
      Besides confirming that the January perihelion worked out according to predictions, engineers found surprises while testing spacecraft components. A couple of instruments came out better than expected after exposure to higher temperatures.
      A camera that helped map asteroid Bennu and will do the same at Apophis, saw a 70% reduction in “hot pixels” since April 13, 2023, the last time it was tested. Hot pixels, which are common in well-used cameras in space, show up as white spots in images when detectors accumulate exposure to high-energy radiation, mostly from our Sun.
      “We think the heat from the Sun reset the pixels through annealing,” said Amy Simon, OSIRIS-APEX project scientist, based at NASA Goddard. Annealing is a heat process that can restore function of instruments and is often done intentionally through built-in heaters on some spacecraft.
      Another welcome surprise, said Simon, came from the spacecraft’s visible and near-infrared spectrometer. Before perihelion, the spectrometer, which mapped the surface composition of Bennu, and will do the same at Apophis, seemed to have a rock from Bennu stuck inside its calibration port. Scientist suspected that some sunlight was blocked from filtering through the instrument after the spacecraft, then called OSIRIS-REx, grabbed a sample from asteroid Bennu on Oct. 20, 2020. By picking up the sample and then firing its engines to back away from Bennu, the spacecraft stirred up dust and pebbles that clung to it.
      “But, with enough spacecraft maneuvers and engine burns after sample collection,” Simon said, the rock in the calibration port appears to have been dislodged. Scientists will check the spectrometer again when OSIRIS-APEX swings by Earth on Sept. 25, 2025, for a gravitational boost.
      OSIRIS-APEX is now operating normally as it continues its journey toward asteroid Apophis for a 2029 rendezvous. Its better-than-expected performance during the first close perihelion is welcome news. But engineers caution that it doesn’t mean it’s time to relax. OSIRIS-APEX needs to execute five more exceptionally close passes of the Sun – along with three Earth gravity assists – to get to its destination. It’s unclear how the cumulative effect of six perihelions at a closer distance than designed will impact the spacecraft and its components.
      The second OSIRIS-APEX perihelion is scheduled for Sept. 1. The spacecraft will be 46.5 million miles away from the Sun, which is roughly half the distance between Earth and the Sun, and well inside the orbit of Venus.
      OSIRIS-APEX (previously named OSIRIS-REx) is the third mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center in for the agency’s Science Mission Directorate.
      › Back to Top
      View the full article
  • Check out these Videos

×
×
  • Create New...