Jump to content

Gaia – ESA’s billion star surveyer


Recommended Posts

Gaia_ESA_s_billion_star_surveyer_card_fu Video: 00:01:00

ESA’s Gaia space telescope revolutionises our understanding of the Milky Way. It scans the sky to measure the position, movement, distance, and characteristics of billions of stars. It is creating the most precise map of our home galaxy yet, providing clues to its origin and evolution. Gaia not only studies the stars, but also what is in between them, as well as asteroids and planetary moons in our Solar System, binary stars and exoplanets, and quasars and galaxies outside of the Milky Way. Gaia provides us with a wealth of data, giving us a new sense of our place in the Universe.

Gaia’s data release 3 will be made public on 13 June 2022: https://www.cosmos.esa.int/web/gaia/data-release-3

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      20 Min Read The Marshall Star for July 24, 2024
      25 Years On, Chandra Highlights Legacy of NASA Engineering Ingenuity
      By Rick Smith
      “The art of aerospace engineering is a matter of seeing around corners,” said NASA thermal analyst Jodi Turk. In the case of NASA’s Chandra X-ray Observatory, marking its 25th anniversary in space this year, some of those corners proved to be as far as 80,000 miles away and a quarter-century in the future.
      Turk is part of a dedicated team of engineers, designers, test technicians, and analysts at NASA’s Marshall Space Flight Center. Together with partners outside and across the agency, including the Chandra Operations Control Center in Burlington, Massachusetts, they keep the spacecraft flying, enabling Chandra’s ongoing studies of black holes, supernovae, dark matter, and more – and deepening our understanding of the origin and evolution of the cosmos.
      Engineers in the X-ray Calibration Facility – now the world-class X-ray & Cryogenic Facility – at NASA’s Marshall Space Flight Center integrate the Chandra X-ray Observatory’s High Resolution Camera with the mirror assembly inside a 24-foot-diameter vacuum chamber, in this photo taken March 16, 1997. Chandra was launched July 23, 1999, aboard space shuttle Columbia.NASA “Everything Chandra has shown us over the last 25 years – the formation of galaxies and super star clusters, the behavior and evolution of supermassive black holes, proof of dark matter and gravitational wave events, the viability of habitable exoplanets – has been fascinating,” said retired NASA astrophysicist Martin Weisskopf, who led Chandra scientific development at Marshall beginning in the late 1970s. “Chandra has opened new windows in astrophysics that we’d hardly begun to imagine in the years prior to launch.”
      Following extensive development and testing by a contract team managed and led by Marshall, Chandra was lifted to space aboard the space shuttle Columbia on July 23, 1999. Marshall has continued to manage the program for NASA ever since.
      “How much technology from 1999 is still in use today?” said Chandra researcher Douglas Swartz. “We don’t use the same camera equipment, computers, or phones from that era. But one technological success – Chandra – is still going strong, and still so powerful that it can read a stop sign from 12 miles away.”
      That lasting value is no accident. During early concept development, Chandra – known prior to launch as the Advanced X-ray Astrophysics Facility – was intended to be a 15-year, serviceable mission like that of NASA’s Hubble Space Telescope, enabling periodic upgrades by visiting astronauts.
      The Chandra X-Ray Observatory, the longest cargo ever carried to space aboard the space shuttle, seen in Columbia’s payload bay prior to being tilted upward for release and deployment on July 23, 1999.NASA But in the early 1990s, as NASA laid plans to build the International Space Station in orbit, the new X-ray observatory’s budget was revised. A new, elliptical orbit would carry Chandra a third of the way to the Moon, or roughly 80,000 miles from Earth at apogee. That meant a shorter mission life – five years – and no periodic servicing.
      The engineering design team at Marshall, its contractors, and the mission support team at the Smithsonian Astrophysical Observatory revised their plan, minimizing the impact to Chandra’s science. In doing so, they enabled a long-running science mission so successful that it would capture the imagination of the nation and lead NASA to extend its duration past that initial five-year period.
      “There was a lot of excitement and a lot of challenges – but we met them and conquered them,” said Marshall project engineer David Hood, who joined the Chandra development effort in 1988.
      “The field of high-powered X-ray astronomy was still so relatively young, it wasn’t just a matter of building a revolutionary observatory,” Weisskopf said. “First, we had to build the tools necessary to test, analyze, and refine the hardware.”
      On July 23, 1999, the Chandra X-Ray Observatory is released from space shuttle Columbia’s payload bay. Twenty-five years later, Chandra continues to make valuable discoveries about high-energy sources and phenomena across the universe.NASA Marshall renovated and expanded its X-ray Calibration Facility – now known as the X-ray & Cryogenic Facility – to calibrate Chandra’s instruments and conduct space-like environment testing of sensitive hardware. That work would, years later, pave the way for Marshall testing of advanced mirror optics for NASA’s James Webb Space Telescope.
      “Marshall has a proven history of designing for long-term excellence and extending our lifespan margins,” Turk said. “Our missions often tend to last well past their end date.”
      Chandra is a case in point. The team has automated some of Chandra’s operations for efficiency. They also closely monitor key elements of the spacecraft, such as its thermal protection system, which have degraded as anticipated over time, due to the punishing effects of the space environment.
      “Chandra’s still a workhorse, but one that needs gentler handling,” Turk said. The team met that challenge by meticulously modeling and tracking Chandra’s position and behavior in orbit and paying close attention to radiation, changes in momentum, and other obstacles. They have also employed creative approaches, making use of data from sensors on the spacecraft in new ways.
      An artist’s illustration depicting NASA’s Chandra X-ray Observatory in flight, with a vivid star field behind it. Chandra’s solar panels are deployed and its camera “eye” open on the cosmos.NASA Acting project manager Andrew Schnell, who leads the Chandra team at Marshall, said the mission’s length means the spacecraft is now overseen by numerous “third-generation engineers” such as Turk. He said they’re just as dedicated and driven as their senior counterparts, who helped deliver Chandra to launch 25 years ago.
      The work also provides a one-of-a-kind teaching opportunity, Turk said. “Troubleshooting Chandra has taught us how to find alternate solutions for everything from an interrupted sensor reading to aging thermocouples, helping us more accurately diagnose issues with other flight hardware and informing design and planning for future missions,” she said.
      Well-informed, practically trained engineers and scientists are foundational to productive teams, Hood said – a fact so crucial to Chandra’s success that its project leads and support engineers documented the experience in a paper titled, “Lessons We Learned Designing and Building the Chandra Telescope.”
      “Former program manager Fred Wojtalik said it best: ‘Teams win,’” Hood said. “The most important person on any team is the person doing their work to the best of their ability, with enthusiasm and pride. That’s why I’m confident Chandra’s still got some good years ahead of her. Because that foundation has never changed.”
      As Chandra turns the corner on its silver anniversary, the team on the ground is ready for whatever fresh challenge comes next.
      Learn more about the Chandra X-ray Observatory and its mission.
      Smith, an Aeyon/MTS employee, supports the Marshall Office of Communications.
      › Back to Top
      NASA Sounding Rocket Launches, Studies Heating of Sun’s Active Regions
      By Wayne Smith
      Investigators at NASA’s Marshall Space Flight Center will use observations from a recently launched sounding rocket mission to provide a clearer image of how and why the Sun’s corona grows so much hotter than the visible surface of Earth’s parent star. The MaGIXS-2 mission – short for the second flight of the Marshall Grazing Incidence X-ray Spectrometer – launched from White Sands Missile Range in New Mexico on July 16.
      The mission’s goal is to determine the heating mechanisms in active regions on the Sun by making critical observations using X-ray spectroscopy.
      NASA’s MaGIXS-2 sounding rocket mission successfully launches from White Sands Missile Range in New Mexico on July 16.United States Navy The Sun’s surface temperature is around 10,000 degrees Fahrenheit – but the corona routinely measures more than 1.8 million degrees, with active regions measuring up to 5 million degrees.
      Amy Winebarger, Marshall heliophysicist and principal investigator for the MaGIXS missions, said studying the X-rays from the Sun sheds light on what’s happening in the solar atmosphere – which, in turn, directly impacts Earth and the entire solar system.
      X-ray spectroscopy provides unique capabilities for answering fundamental questions in solar physics and for potentially predicting the onset of energetic eruptions on the Sun like solar flares or coronal mass ejections. These violent outbursts can interfere with communications satellites and electronic systems, even causing physical drag on satellites as Earth’s atmosphere expands to absorb the added solar energy.
      “Learning more about these solar events and being able to predict them are the kind of things we need to do to better live in this solar system with our Sun,” Winebarger said.
      The NASA team retrieved the payload immediately after the flight and has begun processing datasets.
      “We have these active regions on the Sun, and these areas are very hot, much hotter than even the rest of the corona,” said Patrick Champey, deputy principal investigator at Marshall for the mission. “There’s been a big question – how are these regions heated? We previously determined it could relate to how often energy is released. The X-rays are particularly sensitive to this frequency number, and so we built an instrument to look at the X-ray spectra and disentangle the data.”
      The MaGIXS-2 sounding rocket team stand on the launchpad in White Sands, New Mexico, prior to launch July 16.United States Navy Following a successful July 2021 launch of the first MaGIXS mission, Marshall and its partners refined instrumentation for MaGIXS-2 to provide a broader view for observing the Sun’s X-rays. Marshall engineers developed and fabricated the telescope and spectrometer mirrors, and the camera. The integrated instrument was exhaustively tested in Marshall’s state-of-the-art X-ray & Cryogenic Facility. For MaGIXS-2, the team refined the same mirrors used on the first flight, with a much larger aperture and completed the testing at Marshall’s Stray Light Test Facility.
      A Marshall project from inception, technology developments for MaGIXS include the low-noise CCD camera, high-resolution X-ray optics, calibration methods, and more.
      Winebarger and Champey said MaGIXS many of the team members started their NASA careers with the project, learning to take on lead roles and benefitting from mentorship.
      “I think that’s probably the most critical thing, aside from the technology, for being successful,” Winebarger said. “It’s very rare that you get from concept to flight in a few years. A young engineer can go all the way to flight, come to White Sands to watch it launch, and retrieve it.”
      NASA routinely uses sounding rockets for brief, focused science missions. They’re often smaller, more affordable, and faster to design and build than large-scale satellite missions, Winebarger said. Sounding rockets carry scientific instruments into space along a parabolic trajectory. Their overall time in space is brief, typically five minutes, and at lower vehicle speeds for a well-placed scientific experiment.
      The MaGIXS mission was developed at Marshall in partnership with the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts. The Sounding Rockets Program Office, located at NASA Goddard Space Flight Center’s Wallops Flight Facility, provides suborbital launch vehicles, payload development, and field operations support to NASA and other government agencies. 
      Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.
      › Back to Top
      From 1 Crew to Another: Artemis II Astronauts Meet NASA Barge Crew
      Members of the Artemis II crew met with the crew of NASA’s Pegasus barge prior to their departure to deliver the core stage of NASA’s SLS (Space Launch System) rocket to the Space Coast.
      NASA astronaut and pilot of the Artemis II mission Victor Glover met the crew July 15. NASA astronaut Reid Wiseman, commander, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, mission specialist, visited the barge July 16 shortly before the flight hardware was loaded onto it.
      Crew members of NASA’s Pegasus barge meet with NASA astronaut Victor Glover at NASA’s Michoud Assembly Facility prior to their departure to deliver the core stage of NASA’s SLS (Space Launch System) rocket to the Space Coast. From left are Ashley Marlar, Jamie Crews, Nick Owen, Jefferey Whitehead, Scott Ledet, Jason Dickerson, John Campbell, Glover, Farid Sayah, Kelton Hutchinson, Terry Fitzgerald, Bryan Jones, and Joe Robinson.NASA/Brandon Hancock Pegasus is currently transporting the SLS core stage from NASA’s Michoud Assembly Facility to NASA’s Kennedy Space Center, where it will be integrated and prepared for launch. During the Artemis II test flight, the core stage with its four RS-25 engines will provide more than 2 million pounds of thrust to help send the Artemis II crew around the Moon.
      The Pegasus crew and team, from left, includes Kelton Hutchinson, Jeffery Whitehead, Jason Dickerson, Arlan Cochran, John Brunson, NASA astronaut Reid Wiseman, Marc Verhage, Terry Fitzgerald, Scott Ledet, CSA astronaut Jeremy Hansen, Wil Daly, Ashley Marlar, Farid Sayah, Jamie Crews, Joe Robinson, and Nick Owen.NASA/Sam Lott Pegasus, which was previously used to ferry space shuttle tanks, was modified and refurbished to ferry the SLS rocket’s massive core stage. At 212 feet in length and 27.6 feet in diameter, the Moon rocket stage is more than 50 feet longer than the space shuttle external tank.
      › Back to Top
      I am Artemis: John Campbell
      How do you move NASA’s SLS (Space Launch System) rocket’s massive 212-foot-long core stage across the country? You do it with a 300-foot-long barge. However, NASA’s Pegasus barge isn’t just any barge. It’s a vessel with a history, and John Campbell, a logistics engineer for the agency based at NASA’s Marshall Space Flight Center, is one of the few people who get to be a part of its legacy.
      John Campbell, a logistics engineer at NASA’s Marshall Space Flight Center, stands on NASA’s Pegasus barge July 15.NASA For Campbell, this journey is more than just a job – it’s a lifelong passion realized. “Ever since I was a boy, I’ve been fascinated by engineering,” he said. “But to be entrusted with managing NASA’s Pegasus barge, transporting history-making hardware for human spaceflight across state lines and waterways – is something I never imagined.”
      NASA has used barges to ferry the large and heavy hardware elements of its rockets since the Apollo Program. Replacing the agency’s Poseidon and Orion barges, Pegasus was originally crafted for the Space Shuttle Program and updated in recent years to help usher in the Artemis Generation and accommodate the mammoth dimensions of the SLS core stage. The barge plays a big role in NASA’s logistical operations, navigating rivers and coastal waters across the Southeast, and has transported key structural test hardware for SLS in recent years.
      Campbell grew up in Muscle Shoals, Alabama. After graduating from the University of Alabama with a degree in mechanical engineering, he ventured south to Panama City, Florida, where he spent a few years with a heating, ventilation, and air conditioning consulting team. Looking for an opportunity to move home, he applied for and landed a contractor position with NASA and soon moved to his current civil service role.
      With 17 years under his belt, Campbell has many fond memories during his time with the agency. One standout moment was witnessing the space shuttle stacked in the Vehicle Assembly Building at NASA’s Kennedy Space Center. But it’s not all about rockets and launch pads for Campbell. When he isn’t in his office making sure Pegasus has everything it needs for its next trip out, he is on the water accompanying important pieces of hardware to their next destinations. With eight trips on Pegasus under his belt, the journey never gets old.
      “There is something peaceful when you look out and it’s just you, the water, one or two other boats, and wildlife,” Campbell said. “On one trip we had a pod of at least 20 dolphins surrounding us. You get to see all kinds of cool wildlife and scenery.”
      From cherishing special moments like this to ensuring the success of each journey, Campbell recognizes the vital role he plays in the agency’s goals to travel back to the Moon and beyond and does not take his responsibility lightly.
      “To be a part of the Artemis campaign and the future of space is just cool. I was there when the barge underwent its transformation to accommodate the colossal core stage, and in that moment, I realized I was witnessing history unfold. Though I couldn’t be present at the launch of Artemis I, watching it on TV was an emotional experience. To see something you’ve been a part of, something you’ve watched evolve from mere components to a giant spacecraft hurtling into space – it’s a feeling beyond words.”
      NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
      Marshall manages the SLS Program.
      Read other I am Artemis features.
      › Back to Top
      Icelandic Graduate Student Brings High-Performance Computing Knowledge to IMPACT
      By Derek Koehl
      For the last six months, NASA’s Interagency Implementation and Advanced Concepts Team (IMPACT) foundation model development team at NASA’s Marshall Space Flight Center, has been joined by Þorsteinn Elí Gíslason, a visiting graduate student at the University of Alabama in Huntsville from the University of Iceland.
      His participation on the Prithvi geospatial foundation model, an open-source geospatial artificial intelligence (AI) foundation model for Earth observation data, was part of a collaboration partnership between NASA, the University of Alabama in Huntsville (UAH), the University of Iceland, and the Jülich Supercomputing Centre in Forschungszentrum Jülich, Germany. 
      Þorsteinn Elí Gíslason, a graduate student from the University of Iceland, is supported by NASA’s Interagency Implementation and Advanced Concepts Team (IMPACT) at NASA’s Marshall Space Flight Center. NASA The goal of the collaboration was to share expertise and knowledge across institutions in an open and synergetic way. This partnership serves as a pathfinder for students to work on an international collaborative project and provides extensive research opportunities to graduate students like Elí in fields such as AI foundation models and high-performance computing (HPC). 
      “Elí demonstrated exceptional support in running experiments on the geospatial foundation model, showcasing his expertise and dedication,” said Sujit Roy, Gíslason’s mentor and IMPACT FM team lead from UAH. “I loved one specific quality of Elí, that he asks a lot of questions and puts effort into understanding the problem statement.”
      Gíslason was instrumental in helping the team overcome the hoops and hurdles involved when pre-training a foundation model on a high-performance computing system. His ability to understand models and scale them to multiple graphics processing units (GPUs) was an instrumental skill for the project. He facilitated scripts and simulations to run seamlessly over multiple nodes and GPUs, optimizing resources and accelerating research outcomes. Additionally, Elí’s adeptness in running these models on high-performance computing systems significantly enhanced the team’s computational efficiency. Gíslason also contributed his knowledge of the Jülich Supercomputing Centre’s HPC systems and served an important role with respect to the Centre’s operations. 
      By helping the team overcome the challenges of pre-training, Gíslason’s interest in AI models expanded.
      “For as long as I can remember, I’ve been interested in programming and computers. I’ve always found it fun to apply programming to a problem I’m facing, especially if it has the opportunity to reduce the overall work required,” said Gíslason. “AI, machine learning, and deep learning are just advanced forms of this interest. These models capture my interest in that they are able to solve problems by capturing patterns that don’t have to be explicitly defined beforehand.”
      Gíslason’s work with IMPACT supports his master’s thesis in computational engineering at the University of Iceland. His graduate work builds on his Bachelor of Science in physics. 
      This collaboration was facilitated by Gabriele Cavallaro from Jülich Supercomputing Center and Manil Maskey, IMPACT deputy project manager and research scientist at Marshall. 
      “Open science thrives on sharing expertise, and artificial intelligence encompasses a vast field requiring knowledge across many areas,” Maskey said. “Elí provided one of the key expertise areas crucial to our project. This collaboration was mutually beneficial- our foundation model project gained from his specialized knowledge, while Elí gained valuable technical skills and experience as part of a major NASA project.”
      IMPACT is managed by Marshall and is part of the center’s Earth Science branch. The collaboration was conducted through the IEEE Geoscience and Remote Sensing Society Earth Science Informatics Technical Committee. Along with IMPACT and Marshall, development of the Prithvi geospatial foundation model featured significant contributions from NASA’s Office of the Chief Science Data Officer, IBM Research, Oak Ridge National Laboratory, and the University of Alabama in Huntsville.
      Koehl is a research associate at the University of Alabama in Huntsville supporting IMPACT.
      › Back to Top
      Delta Aquariid Meteor Shower Best Seen in Southern Hemisphere in Late July
      Most casual skywatchers know the bright, busy Perseids meteor shower arrives in late July and peaks in mid-August. Fewer are likely to name-drop the Southern delta Aquariids, which overlap with the Perseids each summer and are typically outshone by their brighter counterparts, especially when the Moon washes out the Southern delta Aquariids.
      Perseids meteors – which coincide with the Southern Delta Aquariids at the tail end of July – streak over Sequoia National Forest in this 2023 NASA file photo. NASA/Preston Dyches) This year, with the Southern delta Aquariids set to peak on the night of July 28, the underdog shower isn’t likely to deliver any surprises. Unless you’re below the equator, it’ll take a keen eye to spot one.
      “The Southern delta Aquariids have a very strong presence on meteor radars which can last for weeks,” said NASA astronomer Bill Cooke, who leads the Meteoroid Environment Office at NASA’s Marshall Space Flight Center. “Sadly, for most observers in the Northern Hemisphere, they’re difficult to spot with the naked eye, requiring the darkest possible skies.”
      Meteor watchers – particularly those in the southern United States and points south – will be best served to check out the night sky July 28-29 before moonrise at 2 a.m.
      During peak shower activity, under ideal viewing conditions with no Moon in the sky, casual watchers may see 2-5 meteors per hour, flashing into view at speeds of 25 miles per second. A small percentage of these may leave glowing, ionized gas trails that linger visibly for a second or two after the meteor has passed. But most of the noticeable activity for the Southern delta Aquariids occurs over a couple of days around its peak, so don’t expect to see any past the end of July.
      You can distinguish Southern delta Aquariids meteors from the Perseids by identifying their radiant, or the point in the sky from which a meteor appears to originate. Southern delta Aquariids appear to come from the direction of the constellation of Aquarius, hence the name. The Perseids’ radiant is in the constellation of Perseus in the northern sky.
      Most astronomers agree the Southern delta Aquariids originate from Comet 96P/Machholz, which orbits the Sun every 5.3 years. Discovered by Donald Machholz in 1986, the comet’s nucleus is roughly 4 miles across – about half the size of the object suspected to have wiped out the dinosaurs. Researchers think debris causing the Southern delta Aquariid meteor shower was generated about 20,000 years ago.
      › Back to Top
      Juno Mission Captures Colorful, Chaotic Clouds of Jupiter
      During its 61st close flyby of Jupiter on May 12, NASA’s Juno spacecraft captured a color-enhanced view of the giant planet’s northern hemisphere. It provides a detailed view of chaotic clouds and cyclonic storms in an area known to scientists as a folded filamentary region. In these regions, the zonal jets that create the familiar banded patterns in Jupiter’s clouds break down, leading to turbulent patterns and cloud structures that rapidly evolve over the course of only a few days.
      During its 61st close flyby of Jupiter on May 12, NASA’s Juno spacecraft captured a color-enhanced view of the giant planet’s northern hemisphere.Image data: NASA/JPL-Caltech/SwRI/MSSS. Image processing by Gary Eason © CC BY Citizen scientist Gary Eason made this image using raw data from the JunoCam instrument, applying digital processing techniques to enhance color and clarity.
      At the time the raw image was taken, the Juno spacecraft was about 18,000 miles above Jupiter’s cloud tops, at a latitude of about 68 degrees north of the equator.
      JunoCam’s raw images are available for the public to peruse and process into image products at https://missionjuno.swri.edu/junocam/processing. More information about NASA citizen science can be found at https://science.nasa.gov/citizenscience.
      NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center for the agency’s Science Mission Directorate. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft.
      Learn more about Juno.
      › Back to Top
      View the full article
    • By NASA
      15 Min Read The Marshall Star for July 17, 2024
      NASA Ships Moon Rocket Stage Ahead of First Crewed Artemis Flight
      NASA rolled out the SLS (Space Launch System) rocket’s core stage for the Artemis II test flight from its Michoud Assembly Facility on Tuesday for shipment to the agency’s Kennedy Space Center. The rollout is key progress on the path to NASA’s first crewed mission to the Moon under the Artemis campaign.
      Using highly specialized transporters, engineers maneuvered the giant core stage from inside Michoud to NASA’s Pegasus barge. The barge will ferry the stage more than 900 miles to Kennedy, where engineers will prepare it in the Vehicle Assembly Building for attachment to other rocket and Orion spacecraft elements.
      Move teams with NASA and Boeing, the SLS core stage lead contractor, position the massive rocket stage for NASA’s SLS rocket on special transporters to strategically guide the flight hardware the 1.3-mile distance from the factory floor onto the agency’s Pegasus barge on July 16. The core stage will be ferried to NASA’s Kennedy Space Center in Florida, where it will be integrated with other parts of the rocket that will power NASA’s Artemis II mission. Pegasus is maintained at NASA’s Michoud Assembly Facility.Credit: NASA “With Artemis, we’ve set our sights on doing something big and incredibly complex that will inspire a new generation, advance our scientific endeavors, and move U.S. competitiveness forward,” said Catherine Koerner, associate administrator for NASA’s Exploration Systems Development Mission Directorate at NASA Headquarters. “The SLS rocket is a key component of our efforts to develop a long-term presence at the Moon.”
      Technicians moved the SLS rocket stage from inside Michoud on the 55th anniversary of the launch of Apollo 11 on July 16, 1969. The move of the rocket stage for Artemis marks the first time since the Apollo Program that a fully assembled Moon rocket stage for a crewed mission rolled out from Michoud.
      The NASA Michoud Assembly Facility workforce and with other agency team members take a “family photo” with the SLS (Space Launch System) core stage for Artemis II in the background on July 16 at Michoud. The core stage will help launch the first crewed flight of NASA’s SLS rocket for the agency’s Artemis II mission. NASA The SLS rocket’s core stage is the largest NASA has ever produced. At 212 feet tall, it consists of five major elements, including two huge propellant tanks that collectively hold more than 733,000 gallons of super-chilled liquid propellant to feed four RS-25 engines. During launch and flight, the stage will operate for just over eight minutes, producing more than 2 million pounds of thrust to propel four astronauts inside NASA’s Orion spacecraft toward the Moon.
      “The delivery of the SLS core stage for Artemis II to Kennedy Space Center signals a shift from manufacturing to launch readiness as teams continue to make progress on hardware for all major elements for future SLS rockets,” said John Honeycutt, SLS program manager at NASA’s Marshall Space Flight Center. “We are motivated by the success of Artemis I and focused on working toward the first crewed flight under Artemis.”
      Team members on July 16 move the first core stage that will help launch the first crewed flight of NASA’s SLS (Space Launch System) rocket for the agency’s Artemis II mission. The move marked the first time a fully assembled Moon rocket stage for a crewed mission has rolled out from NASA’s Michoud Assembly Facility in New Orleans since the Apollo Program. NASA After arrival at Kennedy, the stage will undergo additional outfitting inside the Vehicle Assembly Building. Engineers then will join it with the segments that form the rocket’s twin solid rocket boosters. Adapters for the Moon rocket that connect it to the Orion spacecraft will be shipped to Kennedy this fall, where the interim cryogenic propulsion stage is already. Engineers at Kennedy continue to prepare Orion and exploration ground systems for launch and flight.
      All major structures for every SLS core stage are fully manufactured at Michoud. Inside the factory, core stages and future exploration upper stages for the next evolution of SLS, called the Block 1B configuration, currently are in various phases of production for Artemis III, IV, and V. Beginning with Artemis III, to better optimize space at Michoud, Boeing – the SLS core stage prime contractor – will use space at Kennedy for final assembly and outfitting activities.
      Team members at Michoud Assembly Facility load the first core stage that will help launch the first crewed flight of NASA’s SLS (Space Launch System) rocket for the agency’s Artemis II mission onto the Pegasus barge on July 16. The barge will ferry the core stage on a 900-mile journey from the agency’s Michoud Assembly Facility in New Orleans to its Kennedy Space Center in Florida. NASA Building, assembling, and transporting the SLS core stage is a collaborative effort for NASA, Boeing, and lead RS-25 engines contractor Aerojet Rocketdyne, an L3Harris Technologies company. All 10 NASA centers contribute to its development with more than 1,100 companies across the United States contributing to its production. 
      NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
      › Back to Top
      NASA Barge Preparations for Artemis II Rocket Stage Delivery
      Team members installed pedestals aboard NASA’s Pegasus barge to hold and secure the massive core stage of NASA’s SLS (Space Launch System) rocket, preparing NASA barge crews for their first delivery to support the Artemis II test flight around the Moon. The barge ferried the core stage on a 900-mile journey from the agency’s Michoud Assembly Facility to its Kennedy Space Center.
      Team members at NASA’s Michoud Assembly Facility install pedestals aboard the Pegasus barge to hold and secure the massive core stage of NASA’s SLS (Space Launch System) rocket ahead.NASA/Eric Bordelon The Pegasus crew began installing the pedestals July 10. The barge, which previously was used to ferry space shuttle external tanks, was modified and refurbished to compensate for the much larger and heavier core stage for the SLS rocket. Measuring 212 feet in length and 27.6 feet in diameter, the core stage is the largest rocket stage NASA has ever built and the longest item ever shipped by a NASA barge.
      Pegasus now measures 310 feet in length and 50 feet in width, with three 200-kilowatt generators on board for power. Tugboats and towing vessels moved the barge and core stage from Michoud to Kennedy, where the core stage will be integrated with other elements of the rocket and prepared for launch. Pegasus is maintained at NASA Michoud.
      NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
      NASA’s Marshall Space Flight Center manages the SLS Program and Michoud.
      › Back to Top
      Michoud Marks Artemis II Milestone with Employee Event Featuring NASA Astronaut Victor Glover
      Moon to Mars Program Deputy Associate Administrator Amit Kshatriya, left, and NASA astronaut Victor Glover, right, speak to Michoud Assembly Facility team members on July 15 as part of a Space Flight Awareness event marking Artemis II’s core stage completion. The core stage was rolled out of Michoud’s rocket factory on July 16 for transportation to NASA’s Kennedy Space Center, where it will be integrated with the Orion spacecraft and the remaining components of the SLS (Space Launch System) rocket. (NASA)
      › Back to Top
      Tawnya Laughinghouse Named Director of Marshall’s Materials and Processes Laboratory
      Tawnya Plummer Laughinghouse has been named to the Senior Executive Service position of director of the Materials and Processes Laboratory in the Engineering Directorate at NASA’s Marshall Space Flight Center, effective July 7.
      Tawnya Plummer Laughinghouse has been named to the Senior Executive Service position of director of the Materials and Processes Laboratory in the Engineering Directorate at NASA’s Marshall Space Flight Center.NASA The Materials and Processes Laboratory provides science, technology, and engineering support in materials, processes, and products for use in space vehicle applications, including related ground facilities, test articles and support equipment. As director, Laughinghouse will oversee a workforce of science and engineering experts, as well as several research and development efforts in world-class facilities, including the National Center for Advanced Manufacturing.
      Laughinghouse has more than 20 years of experience at NASA holding various technical leadership, supervisory, and programmatic positions. Since October 2018, she has been manager of the Technology Demonstration Missions (TDM) Program for the Agency, managing the implementation of a diverse portfolio of advanced space technology projects led by NASA Centers and industry partners across the nation with a goal to rapidly develop, demonstrate, and infuse revolutionary, high-payoff technologies. Under her leadership, the program helped expand the boundaries of the aerospace enterprise with the launch of 10 advanced technologies to space between 2018 and 2024. In January 2017, she was competitively selected as deputy manager of the TDM Level 2 Program Office within Marshall’s Science and Technology Office.
      In 2014, she was selected as a member of the NASA Mid-Level Leadership Program. During that time, she completed a detail at NASA Headquarters supporting an Office of Chief Engineer/Office of Chief Technologist joint study on NASA’s Technology Readiness Assessment (TRA) Process.
      Laughinghouse began her NASA career at Marshall in 2004 in the Materials and Processes Laboratory as lead materials engineer for the Space Shuttle Reusable Solid Rocket Motor (RSRM) Booster Separation Motor aft closure assembly. In this role, she also provided technical expertise in advanced materials for high temperature applications and thermal protection systems for solid and liquid rocket propulsion systems. Over the next 12 years, she served the lab in various capacities, including technical lead of the Ceramics & Ablatives team from 2010 to 2016, and developmental assignments such as assistant chief of the Space and Environmental Effects Branch, and chief of the Nonmetallic Materials Branch. Prior to joining Marshall, Laughinghouse spent six years in the U.S. manufacturing industry as a process chemist and product engineer.
      Laughinghouse has been awarded the NASA Exceptional Achievement Medal, the NASA Exceptional Service Medal, and a host of group achievement and external awards, including the distinguished Merit Award from the National Alumnae Association of Spelman College in 2021. She has been recognized extensively in the community for her advocacy for women in STEM and mentoring.
      A federally certified senior/expert program and project manager, Laughinghouse is a graduate of several leadership programs, including the Office of Personnel Management Federal Executive Institute’s Leadership for a Democratic Society. She is a May 2024 graduate of Leadership Greater Huntsville’s Connect-26 Class.
      A native of Columbus, Ohio, Laughinghouse was raised in Huntsville and graduated salutatorian of her class at Sparkman High School in Toney, Alabama. After completing a NASA Summer High School Apprenticeship Research Program (SHARP) internship at Marshall, she applied for the NASA Women in Science and Engineering (WISE) dual-degree program and went on to earn a bachelor’s degree in chemistry and a bachelor’s degree in chemical engineering from Spelman College and the Georgia Institute of Technology, respectively. She also holds a Master of Science in management (concentration in management of technology) from the University of Alabama in Huntsville.
      › Back to Top
      Marshall Engineers Unveil Versatile, Low-cost Hybrid Engine Testbed
      By Rick Smith
      In June, engineers at NASA’s Marshall Space Flight Center unveiled an innovative, 11-inch hybrid rocket motor testbed.
      The new hybrid testbed, which features variable flow capability and a 20-second continuous burn duration, is designed to provide a low-cost, quick-turnaround solution for conducting hot-fire tests of advanced nozzles and other rocket engine hardware, composite materials, and propellants.
      Paul Dumbacher, right, lead test engineer for the Propulsion Test Branch at NASA’s Marshall Space Flight Center, confers with Meredith Patterson, solid propulsion systems engineer, as they install the 11-inch hybrid rocket motor testbed into its cradle in Marshall’s East Test Stand.NASA/Charles Beason Solid rocket propulsion remains a competitive, reliable technology for various compact and heavy-lift rockets as well as in-space missions, offering low propulsion element mass, high energy density, resilience in extreme environments, and reliable performance.
      “It’s time consuming and costly to put a new solid rocket motor through its paces – identifying how materials perform in extreme temperatures and under severe structural and dynamic loads,” said Benjamin Davis, branch chief of the Solid Propulsion and Pyrotechnic Devices Branch of Marshall’s Engineering Directorate. “In today’s fast-paced, competitive environment, we wanted to find a way to condense that schedule. The hybrid testbed offers an exciting, low-cost solution.”
      Initiated in 2020, the project stemmed from NASA’s work to develop new composite materials, additively manufactured – or 3D-printed – nozzles, and other components with proven benefits across the spacefaring spectrum, from rockets to planetary landers.
      After analyzing future industry requirements, and with feedback from NASA’s aerospace partners, the Marshall team recognized that their existing 24-inch rocket motor testbed – a subscale version of the Space Launch System booster – could prove too costly for small startups. Additionally, conventional, six-inch test motors limited flexible configuration and required multiple tests to achieve all customer goals. The team realized what industry needed most was an efficient, versatile third option.
      “The 11-inch hybrid motor testbed offers the instrumentation, configurability, and cost-efficiency our government, industry, and academic partners need,” said Chloe Bower, subscale solid rocket motor manufacturing lead at Marshall. “It can accomplish multiple test objectives simultaneously – including different nozzle configurations, new instrumentation or internal insulation, and various propellants or flight environments.”
      Assessing components of the 11-inch hybrid rocket motor testbed in the wake of successful testing are, from left, Chloe Bower, Marshall’s subscale solid rocket motor manufacturing lead; Jacobs manufacturing engineer Shelby Westrich; and Precious Mitchell, Marshall’s solid propulsion design lead.NASA/Benjamin Davis “That quicker pace can reduce test time from months to weeks or days,” said Precious Mitchell, solid propulsion design lead for the project.
      Another feature of great interest is the on/off switch. “That’s one of the big advantages to a hybrid testbed,” Mitchell said. “With a solid propulsion system, once it’s ignited, it will burn until the fuel is spent. But because there’s no oxidizer in hybrid fuel, we can simply turn it off at any point if we see anomalies or need to fine-tune a test element, yielding more accurate test results that precisely meet customer needs.”
      The team expects to deliver to NASA leadership final test data later this summer. For now, Davis congratulates the Marshall propulsion designers, analysts, chemists, materials engineers, safety personnel, and test engineers who collaborated on the new testbed.
      “We’re not just supporting the aerospace industry in broad terms,” he said. “We’re also giving young NASA engineers a chance to get their hands dirty in a practical test environment solving problems. This work helps educate new generations who will carry on NASA’s mission in the decades to come.”
      For nearly 65 years, Marshall teams have led development of the U.S. space program’s most powerful rocket engines and spacecraft, from the Apollo-era Saturn V rocket and the space shuttle to today’s cutting-edge propulsion systems, including NASA’s newest rocket, the Space Launch System. NASA technology testbeds designed and built by Marshall engineers and their partners have shaped the reliable technologies of spaceflight and continue to enable discovery, testing, and certification of advanced rocket engine materials and manufacturing techniques. 
      Smith, an Aeyon/MTS employee, supports the Marshall Office of Communications.
      › Back to Top
      NASA Honors 25 Years of Chandra at July National Space Club Breakfast
      Andrew Schnell, acting manager of the Chandra X-ray Observatory at NASA’s Marshall Space Flight Center, honored 25 years of the project’s mission success at National Space Club – Huntsville’s breakfast event on July 16.
      Schnell provided insight into Chandra’s history – sharing photos and stories from the project’s initial development, launch, first light images, and some of the most iconic images captured by the telescope to date.
      Chandra launched on STS-93 Shuttle Columbia July 23, 1999. Originally designed as a five-year mission, the telescope’s prolonged success is a testament to the agency’s engineering capabilities.
      “One of the things that excites me about working with Chandra is that are we not only changing our understanding of the universe today, but the data we collect now may help answer questions astrophysicists haven’t even asked yet.” Schnell said. “One day, an astrophysicist – maybe one that hasn’t been born yet – will have a theory, and our data will be there to help them test that theory.” (Photo Credit: Face to Face Marketing)
      › Back to Top
      Take a Summer Cosmic Road Trip with NASA’s Chandra and Webb
      It’s time to take a cosmic road trip using light as the highway and visit four stunning destinations across space. The vehicles for this space get-away are NASA’s Chandra X-ray Observatory and James Webb Space Telescope.
      The first stop on this tour is the closest, Rho Ophiuchi, at a distance of about 390 light-years from Earth. Rho Ophiuchi is a cloud complex filled with gas and stars of different sizes and ages. Being one of the closest star-forming regions, Rho Ophiuchi is a great place for astronomers to study stars. In this image, X-rays from Chandra are purple revealing infant stars that violently flare and produce X-rays. Infrared data from Webb are red, yellow, cyan, light blue and darker blue and provide views of the spectacular regions of gas and dust.
      The first stop on this tour is the closest, Rho Ophiuchi, at a distance of about 390 light-years from Earth.X-ray: NASA/CXC/MIT/C. Canizares; IR: NASA/ESA/CSA/STScI/K. Pontoppidan; Image Processing: NASA/ESA/STScI/Alyssa Pagan, NASA/CXC/SAO/L. Frattare and J. Major The next destination is the Orion Nebula. Still located in the Milky Way galaxy, this region is a little bit farther from our home planet at about 1,500 light-years away. If you look just below the middle of the three stars that make up the “belt” in the constellation of Orion, you may be able to see this nebula through a small telescope. With Chandra and Webb, however, we get to see so much more. Chandra reveals young stars that glow brightly in X-rays, colored in red, green, and blue, while Webb shows the gas and dust in darker red that will help build the next generation of stars here.
      The Orion Nebula.X-ray: NASA/CXC/Penn State/E.Fei It’s time to leave our galaxy and visit another. Like the Milky Way, NGC 3627 is a spiral galaxy that we see at a slight angle. NGC 3627 is known as a “barred” spiral galaxy because of the rectangular shape of its central region. From our vantage point, we can also see two distinct spiral arms that appear as arcs. X-rays from Chandra in purple show evidence for a supermassive black hole in its center while Webb finds the dust, gas, and stars throughout the galaxy in red, green, and blue. This image also contains optical data from the Hubble Space Telescope in red, green, and blue.
      Spiral galaxy NGC 3627.X-ray: NASA/CXC/SAO; Optical: NASA/ESO/STScI, ESO/WFI; Infrared: NASA/ESA/CSA/STScI/JWST; Image Processing:/NASA/CXC/SAO/J. Major Our final landing place on this trip is the farthest and the biggest. MACS J0416 is a galaxy cluster, which are among the largest objects in the Universe held together by gravity. Galaxy clusters like this can contain hundreds or even thousands of individual galaxies all immersed in massive amounts of superheated gas that Chandra can detect. In this view, Chandra’s X-rays in purple show this reservoir of hot gas while Hubble and Webb pick up the individual galaxies in red, green, and blue.
      ACS J0416 galaxy cluster.X-ray: NASA/CXC/SAO/G. Ogrean et al.; Optical/Infrared: (Hubble) NASA/ESA/STScI; IR: (JWST) NASA/ESA/CSA/STScI/Jose M. Diego (IFCA), Jordan C. J. D’Silva (UWA), Anton M. Koekemoer (STScI), Jake Summers (ASU), Rogier Windhorst (ASU), Haojing Yan (University of Missouri) NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.
      › Back to Top
      View the full article
    • By European Space Agency
      Launched in December 2013, ESA’s Gaia spacecraft is on a mission to map the locations and motions of more than a billion stars in the Milky Way with extreme precision.
      But it’s not easy being a satellite: space is a dangerous place. In recent months, hyper-velocity space dust and the strongest solar storm in 20 years have threatened Gaia’s ability to carry out the precise measurements for which it is famous.
      View the full article
    • By NASA
      15 Min Read The Marshall Star for July 10, 2024
      NASA Moon Rocket Stage for Artemis II Moved, Prepped for Shipment
      NASA is preparing the SLS (Space Launch System) rocket core stage that will help power the first crewed mission of NASA’s Artemis campaign for shipment. On July 6, NASA and Boeing, the core stage lead contractor, moved the Artemis II rocket stage to another part of the agency’s Michoud Assembly Facility. The move comes as teams prepare to roll the massive rocket stage to the agency’s Pegasus barge for delivery to NASA’s Kennedy Space Center in mid-July.
      On July 6, NASA and Boeing, the core stage lead contractor, move the Artemis II rocket stage at the agency’s Michoud Assembly Facility. The move comes as teams prepare to roll the massive rocket stage to the agency’s Pegasus barge for delivery to NASA’s Kennedy Space Center in mid-July.NASA/Michael DeMocker Prior to the move, technicians began removing external access stands, or scaffolding, surrounding the rocket stage in early June. NASA and Boeing teams used the scaffolding surrounding the core stage to assess the interior elements, including its complex avionics and propulsion systems. The 212-foot core stage has two huge propellant tanks, avionics and flight computer systems, and four RS-25 engines, which together enable the stage to operate during launch and flight.
      The stage is fully manufactured and assembled at Michoud. Building, assembling, and transporting is a joint process for NASA, Boeing, and lead RS-25 engines contractor Aerojet Rocketdyne, an L3Harris Technologies company.
      Teams at NASA’s Michoud Assembly Facility are preparing the core stage of the agency’s SLS (Space Launch System) for shipment to the agency’s Kennedy Space Center. The 212-foot-tall core stage and its four RS-25 engines will help power Artemis II, the first crewed mission of NASA’s Artemis campaign. In this video, watch as crew remove the external access stands, or scaffolding, before moving the rocket hardware to another area of the facility. (NASA) NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
      NASA’s Marshall Space Flight Center manages the SLS Program and Michoud.
      › Back to Top
      Marshall Researchers Battle Biofilm in Space
      By Rick Smith
      A small group of scientists on the biofilm mitigation team at NASA’s Marshall Space Center study solutions to combat fast-growing colonies of bacteria or fungi, known as biofilm, for future space missions.
      Biofilm occurs when a cluster of bacteria or fungi generates a slimy matrix of “extracellular polymeric substances” to protect itself from adverse environmental factors. Biofilm can be found nearly anywhere, from the gray-green scum floating on stagnant pond water to the pinkish ring of residue in a dirty bathtub.
      The biofilm mitigation research team at NASA’s Marshall Space Flight Center assembled its own test stand to undertake a multi-month assessment of a variety of natural and chemical compounds and strategies for eradicating biofilm accretion caused by bacteria and fungi in the wastewater tank assembly on the International Space Station. Testing will help NASA extend the lifecycle of water reclamation and recycling hardware and ensure astronauts can sustain clean, healthy water supplies on long-duration missions in space and on other worlds.NASA/Eric Beitle For medical, food production, and wastewater processing industries, biofilm is often a costly issue. But offworld, biofilm proves to be even more resilient.
      “Bacteria shrug off many of the challenges humans deal with in space, including microgravity, pressure changes, ultraviolet light, nutrient levels, even radiation,” said Yo-Ann Velez-Justiniano, a Marshall microbiologist and environmental control systems engineer.
      “Biofilm is icky, sticky – and hard to kill,” said Liezel Koellner, a chemical engineer and NASA Pathways intern from North Carolina State University in Raleigh. Koellner used sophisticated epifluorescence microscopy, 3D visualizations of 2D images captured at different focal planes, to fine-tune the team’s studies.
      Keenly aware of the potential hurdles biofilm could pose in future Artemis-era spacecraft and lunar habitats, NASA tasked engineers and chemists at Marshall to study mitigation techniques. Marshall built and maintains the International Space Station’s ECLSS (Environment Control and Life Support System) and is developing next-generation air and water reclamation and recycling technologies, including the system’s wastewater tank assembly.
      “The wastewater tank is ‘upstream’ from most of our built-in water purification methods. Because it’s a wastewater feed tank, bacteria and fungus grow well there, generating enough biofilm to clog flow paths and pipes along the route,” said Eric Beitle, ECLSS test engineer at Marshall.
      To date, the solution has been to pull and replace old hardware once parts become choked with biofilm. But engineers want to avoid the need for such tactics.
      “Even with the ability to 3D-print spare parts on the Moon or Mars, it makes sense to find strategies that prevent biofilm buildup in the first place,” said Velez-Justiniano.
      The team took the first step in June 2023 by publishing the complete genome sequence of several strains of bacteria isolated from the space station’s water reclamation system, all of which cultivate biofilm formation.
      Yo-Ann Velez-Justiniano, left, and Connor Murphy, right, both Environmental Control and Life Support Systems engineers at Marshall, prepare slides for study of cultured bacterial biofilm in the center’s test facility.NASA/Eric Beitle They next designed a test stand simulating conditions in the wastewater tank about 250 miles overhead, which permits simultaneous study of multiple mitigation options. The rig housed eight Centers for Disease Control and Prevention biofilm reactors – cylindrical devices roughly the size of a runner’s water bottle – each 1/60th the size of the actual tank.
      Each bioreactor holds up to 21 unique test samples on slides, bathed continuously in a flow of real or ersatz wastewater, timed and measured by the automated system, and closely monitored by the team. Because of the compact bioreactor size, the test stand required 2.1 gallons of ersatz flow per week, continuously trickling 0.1 milliliters per minute into each of the eight bioreactors.
      “Essentially, we built a collection of tiny systems that all had to permit minute changes to temperature and pressure, maintain a sterile environment, provide autoclave functionality, and run in harmony for weeks at a time with minimal human intervention,” Beitle said. “One phase of the test series ran nonstop for 65 days, and another lasted 77 days. It was a unique challenge from an engineering perspective.”
      Different surface mitigation strategies, upstream counteragents, antimicrobial coatings, and temperature levels were introduced in each bioreactor. One promising test involved duckweed, a plant already recognized as a natural water purification system and for its ability to capture toxins and control wastewater odor. By devouring nutrients upstream of the bioreactor, the duckweed denied the bacteria what it needs to thrive, reducing biofilm growth by up to 99.9%.
      Over the course of the three-month testing period, teams removed samples from each bioreactor at regular intervals and prepared for study under a microscope to make a detailed count of the biofilm colony-forming units on each plate.
      “Bacteria and fungi are smart,” Velez-Justiniano said. “They adapt. We recognize that it’s going to take a mix of effective biofilm mitigation methods to overcome this challenge.”
      Biofilm poses as an obstacle to long-duration spaceflight and extended missions on other worlds where replacement parts may be costly or difficult to obtain. The biofilm mitigation team continues to assess and publish findings, alongside academic and industry partners, and will further their research with a full-scale tank experiment at Marshall. They hope to progress to flight tests, experimenting with various mitigation methods in real microgravity conditions in orbit to find solutions to keep surfaces clean, water potable, and future explorers healthy.
      Smith, an Aeyon/MTS employee, supports the Marshall Office of Communications.
      › Back to Top
      Pathways Intern Liezel Koellner Aids NASA Biofilm Mitigation
      By Rick Smith
      Liezel Koellner is a NASA Pathways intern pursuing her master’s degree in chemical engineering from North Carolina State University in Raleigh. Like most ambitious young engineers, she sought a variety of different internships to augment her classwork.
      But once she got word she’d been chosen to spend the spring 2024 term conducting biochemistry experiments at NASA’s Marshall Space Flight Center, her choice was made.
      NASA Pathways intern Liezel Koellner, right, and her mentor Yo-Ann Velez-Justiniano, a microbiologist at NASA’s Marshall Space Flight Center, prepare compact bioreactors to be installed in the Marshall biofilm mitigation test stand, which is helping researchers study ways to curtail bacterial and fungal biofilm growth in water reclamation systems such as the one on the International Space Station. NASA/Eric Beitle “As a kid, I never imagined I could work at NASA,” she said. “It was a mind-blowing idea!”
      That’s how she wound up spending the semester up to her safety gloves in bacterial goo – helping NASA’s biofilm mitigation team study strategies for vanquishing a pervasive, slimy invader playing havoc with space-based hardware. And Koellner couldn’t be happier.
      Biofilm is the sticky goo generated by bacteria or fungi to armor itself against radiation, airlessness, and other conditions in space. Astronauts keep their environment fairly ship-shape – but inside closed water reclamation systems, like the one on the International Space Station, biofilm can thrive, wreaking havoc on critical life support systems.
      Joining a team of Marshall microbiologists, chemists, and hardware engineers, Koellner spent weeks cultivating sample bacteria – either simulated stuff chemically created onsite or samples shipped frozen from NASA and Boeing archives. She closely monitored ongoing tests, regularly pulling samples to count biofilm colonies.
      Most importantly, she oversaw the use of precision epifluorescence microscopy, which employs 3D visualizations to identify layered growth in 2D sample images. That contribution most impressed Marshall microbiologist Yo-Ann Velez-Justiniano, Koellner’s supervisor and project mentor, who said it dramatically improved data accuracy.
      “Liezel was able to more accurately analyze patterns of sample growth and deliver precise quantitative data identifying biofilm progression,” Velez-Justiniano said.
      A formula for success
      Koellner said she’s always been driven to soak up as much practical experience as possible. She was born in Guam to Filipino parents who later emigrated to San Diego, California, to raise their family. From a young age, she took school very seriously.
      Velez-Justiniano, left, who heads the biofilm mitigation science team at Marshall, looks on as Koellner, right, shows off her latest sample findings.NASA/Eric Beitle “I always enjoyed chemistry, observing scientific processes and documenting the effects,” Koellner said, but she was daunted by the challenges of calculus-based physics, used to model systems where change occurs and an integral part of scientific fields serving space exploration, engineering, pharmacology, and more.
      That changed when she got to the University of North Carolina in Wilmington. “Suddenly, everything clicked,” she said. “With physics, it was amazing to see how math could be applied to real-life applications.”
      That practical blend of disciplines led her to consider a career in chemical engineering – using chemical processes to develop products and resources for commercial uses. After completing her bachelor’s degree in chemistry at the University of North Carolina in 2022 and spending a year as a chemist for a private lab in Wilmington, she enrolled at North Carolina State, where she expects to graduate in 2026 with a master’s in chemical engineering.
      From water reclamation to air recycling
      With the biofilm mitigation tests completed – but her internship continuing until August – Koellner has shifted tracks, moving from the challenges of water reclamation to oxygen recovery solutions for future space habitats and on other worlds.
      She’s part of a different team of Marshall ECLSS (Environment Control and Life Support System) specialists, studying ways to recover oxygen from methane gas. That capability could support a variety of oxygen recovery and recycling systems, saving and storing breathable air instead of just jettisoning it into space along with waste gas products. Koellner will write documentation and help monitor and operate the active test stand, once again working alongside Marshall specialists from various disciplines.
      She said their commitment has left a lasting impression.
      “Everyone is so willing to lend their expertise to pursue work that could impact NASA missions years or even decades in the future,” she said. “The diligence and enthusiasm here are tangible things. That’s the kind of engineer – the kind of person – I want to be.”
      Smith, an Aeyon/MTS employee, supports the Marshall Office of Communications.
      › Back to Top
      Lisa Bates Named Director of Marshall’s Engineering Directorate
      Lisa Bates has been named director of the Engineering Directorate at NASA’s Marshall Space Flight Center, effective July 14. In her new role, Bates will be responsible for the center’s largest organization, comprised of more than 2,500 civil service and contractor personnel, who design, test, evaluate, and operate flight hardware and software associated with Marshall-developed space transportation and spacecraft systems, science instruments, and payloads.
      Lisa Bates has been named director of the Engineering Directorate at NASA’s Marshall Space Flight Center.NASA Since November 2023, Bates has served as deputy director of the Engineering Directorate. She was also previously director of Marshall’s Test Laboratory. Appointed to the position in 2021, Bates provided executive leadership for all aspects of the Laboratory, including workforce, budget, infrastructure, and operations for testing.
      She joined Marshall in 2008 as the Ares I Upper Stage Thrust Vector Control lead in the Propulsion Department. Since then, she has served in positions of increasing responsibility and authority. From 2009 to 2017, she served as the first chief of the new TVC Branch, which was responsible for defining operational requirements, performing analysis, and evaluating Launch Vehicle TVC systems and TVC components.
      As the Space Launch System (SLS) Program Executive from 2017 to 2018, Bates supported the NASA Deputy Associate Administrator for Exploration Systems Development as the liaison and advocate of the SLS. Upon returning to MSFC in 2018, she was selected as deputy manager of the SLS Booster Element Office. Bates also served as deputy manager of the SLS Stages Office from 2018 to 2021 where she shared the responsibilities, accountability, and authorities for all activities associated with the requirements definition, design, development, manufacturing, assembly, green run test, and delivery of the SLS Program’s Stages Element.
      Prior to her NASA career, Bates worked 18 years in private industry for numerous aerospace and defense contractors, including Jacobs Engineering, Marotta Scientific Controls, United Technologies (USBI), United Defense, and Sverdrup Technologies.
      Bates holds a bachelor’s degree in mechanical engineering from the University of Alabama in Huntsville. She was awarded a NASA Outstanding Leadership Medal in 2013 and 2022 and has received numerous group and individual achievement awards.
      › Back to Top
      Orion on the Rise
      Technicians lift NASA’s Orion spacecraft out of the Final Assembly and System Testing cell at NASA’s Kennedy Space Center on June 28. The integrated spacecraft, which will be used for the Artemis II mission to orbit the Moon, has been undergoing final rounds of testing and assembly, including end-to-end performance verification of its subsystems and checking for leaks in its propulsion systems. A 30-ton crane returned Orion into the recently renovated altitude chamber where it underwent electromagnetic testing. The spacecraft now will undergo a series of tests that will subject it to a near-vacuum environment by removing air, thus creating a space where the pressure is extremely low. This results in no atmosphere, similar to the one the spacecraft will experience during future lunar missions. The data recorded during these tests will be used to qualify the spacecraft to safely fly the Artemis II astronauts through the harsh environment of space. (NASA/Radislav Sinyak)
      › Back to Top
      NASA to Cover Northrop Grumman’s 20th Cargo Space Station Departure
      Northrop Grumman’s uncrewed Cygnus spacecraft is scheduled to depart the International Space Station on July 12, five and a half months after delivering more than 8,200 pounds of supplies, scientific investigations, commercial products, hardware, and other cargo to the orbiting laboratory for NASA and its international partners.
      Northrop Grumman’s Cygnus spacecraft and the International Space Station above western Mongolia.NASA This mission was the company’s 20th commercial resupply mission to the space station for NASA.
      Live coverage of the spacecraft’s departure will begin at 5:30 a.m. CDT on the NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA TV through a variety of platforms including social media.
      Flight controllers on the ground will send commands for the space station’s Canadarm2 robotic arm to detach Cygnus from the Unity module’s Earth-facing port, then maneuver the spacecraft into position for its release at 6 a.m. NASA astronaut Mike Barratt will monitor Cygnus’ systems upon its departure from the space station.
      Following unberthing, the Kentucky Re-entry Probe Experiment-2 (KREPE-2), stowed inside Cygnus, will take measurements to demonstrate a thermal protection system for the spacecraft and its contents during re-entry in Earth’s atmosphere.
      Cygnus – filled with trash packed by the station crew – will be commanded to deorbit July 13, setting up a destructive re-entry in which the spacecraft will safely burn up in Earth’s atmosphere.
      The Northrop Grumman spacecraft arrived at the space station Feb. 1, following a launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station.
      The HOSC (Huntsville Operations Support Center) at NASA’s Marshall Space Flight Center provides engineering and mission operations support for the space station, the Commercial Crew Program, and Artemis missions, as well as science and technology demonstration missions. The Payload Operations Integration Center within the HOSC operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day.
      Get breaking news, images, and features from the space station on the station blog.
      › Back to Top
      Happy Birthday, Meatball! NASA’s Iconic Logo Turns 65
      On July 15, NASA’s logo is turning 65. The iconic symbol, known affectionately as “the meatball,” was developed at NASA’s Lewis Research Center (now called NASA Glenn). Employee James Modarelli, who started his career at the center as an artist and technical illustrator, was its chief designer.
      A painter applies a fresh coat of paint to the NASA “meatball” logo on the north façade of Glenn Research Center’s Flight Research Building, or hangar, in 2006.NASA/Marvin Smith The red, white, and blue design, which includes elements representing NASA’s space and aeronautics missions, became the official logo of the United States’ new space agency in 1959. A simplified version of NASA’s formal seal, the symbol has launched on rockets, flown to the Moon and beyond, and even adorns the International Space Station.
      Workers install the NASA “meatball” logo on the front of the Flight Research Building, or hangar, at Lewis Research Center (now NASA Glenn) in 1962.NASA Along with its importance as a timeless symbol of exploration and discovery, the logo is also one of the world’s most recognized brand symbols. It gained its nickname in 1975 to differentiate it from NASA’s “worm” logotype. The “meatball” and these other NASA designs have made waves in pop culture.
      “NASA’s brand elements are wildly popular,” said Aimee Crane, merchandising and branding clearance manager for the agency. “Every year, the agency receives requests to merchandise more than 10,000 NASA-inspired items.”
      › Back to Top
      View the full article
    • By NASA
      30 Min Read The Marshall Star for July 3, 2024
      11 Marshall Team Members, 5 Teams Awarded in Space Flight Awareness Ceremony
      By Jessica Barnett
      Sixteen individuals and groups from across NASA’s Marshall Space Flight Center were recognized June 27 for going above and beyond in their support of the human space program.
      Marshall Deputy Director Rae Ann Meyer presented the awards during a special Space Flight Awareness ceremony in Activities Building 4316.
      NASA’s Marshall Space Flight Center Deputy Director Rae Ann Meyer speaks to audience members and award winners at the Space Flight Awareness awards ceremony held June 27 in Activities Building 4316. In all, 11 Marshall team members were presented with SFA Trailblazer or Management awards, while five teams were presented with SFA Team Awards. NASA/Charles Beason “I am honored to be part of Marshall’s talented and dedicated workforce, with all we accomplish,” Meyer said. “Celebrating your commitment to keeping our astronauts and our missions safe through your daily work is a true joy. Your ability to innovate, lead, and manage successful teams is inspiring.”
      Of the 16 awards presented, nine were awarded to SFA Trailblazers. These individuals, each in the early stages of their career, demonstrate a strong work ethic and creative, innovative thinking in support of human spaceflight.
      Two Marshall team members received the SFA Management Award, which aims to recognize mid-level managers who consistently demonstrate loyalty, empowerment, accountability, diversity, excellence, respect, sharing, honesty, integrity, and proactivity.
      In addition, five teams received the SFA Teams Award in recognition of their exemplary teamwork while accomplishing a particular task or goal in support of the human space program.
      The full list of winners is below:
      Trailblazers
      Josie Blocker Savannah Bullard Austin Lee Kaitlin Oliver-Butler Nicholas Olson Elvis Popov Gwyer Sinclair Timothy Wray William Till Management
      Jennifer Franzo John Sharp Teams
      Safety Mission Assurance Software Assurance Launch Support Team, Artemis I Team SLS (Space Launch System) Engineering Imagery Team Mars Ascent Vehicle Verification and Validation Team SLS Coupled Loads Analysis Team ECLSS (Environmental Control and Life Support Systems) Flight Systems Design and Analysis Team The SFA Trailblazer, Management, and Team awards are three of eight awards presented annually by Space Flight Awareness. Additional information, including eligibility criteria, can be found here.
      Barnett, a Media Fusion employee, supports the Marshall Office of Communications.
      › Back to Top
      Marshall’s Hot Gas Facility, Team Provide Critical Testing Capability
      By Wayne Smith
      The Hot Gas Facility at NASA’s Marshall Space Flight Center can really take the heat – up to 3,000 degrees Fahrenheit – creating a test environment geared for making human space exploration safer.
      Mitigating human risk and returning Artemis II astronauts safely to Earth is paramount as NASA prepares for its first crewed mission aboard the Space Launch System to the Moon in more than 50 years. Engineers use the Marshall facility to simulate launch conditions for testing SLS hardware, the TPS (thermal protection system), and other materials in a Mach 4 environment – four times the speed of sound.
      The Hot Gas Facility at NASA’s Marshall Space Flight Center is a unique, world-class gaseous hydrogen/air combustion-driven wind tunnel used primarily for Thermal Protection System testing and aerothermal definition. NASA “At NASA, we live on the idea of ‘test like you fly,’” said Malik Thompson, Commercial Crew TPS subsystem manager. “It’s very difficult to replicate the entirety of space and the environment that gets you there. It’s a unique capability – and the only one in the entire world.”
      The current Hot Gas Facility has been in service for 37-plus years and has completed more than 27,000 hot firings. It was built to develop, characterize, and qualify TPS materials for flight vehicles, but has proven to be invaluable for addressing in-flight anomalies and performing material and instrumentation studies. It has qualified materials for NASA crewed and uncrewed flight vehicles, as well as for Department of Defense and commercial vehicles. 
      During tests, combustion products are expanded from the combustion chamber through a two-dimensional nozzle into a 16×16 inch test section. A Mach 4 flow environment is induced, along with heating rates up to 3,000 degrees Fahrenheit. It can induce convective and radiant heating simultaneously to accurately simulate flight conditions during ascent. The facility has 512 channels of instrumentation to support a variety of engineering measurements and test scenarios.
      The facility’s flexibility, and its innovative and experienced crew members, means NASA can accomplish testing more quickly and at considerably less cost when compared to large national test facilities.
      “Conditions and configurations can be adjusted during a test program to address issues as they arise,” said Greg Vinyard, a Marshall engineer who has worked 38 years at the facility. “This flexibility is valuable for small and large-scale research and development programs. The experienced crew adds to the unique capability, working with customers to provide innovative methods to address the requirements of a test program and maximize the results of the testing.”
      The facility served as the benchmark for the recession characteristics of space shuttle TPS materials and historically has been “the acid test” – if a material survives the Hot Gas Facility environments, the material will survive flight environments.
      “Freeing a launch vehicle from the surface of Earth is a huge part of space travel, and you need a lot of acceleration speed to escape gravity,” Thompson said. “It’s something you can’t replicate very easily, but the Hot Gas Facility is so much more than a wind tunnel. The high temperature aspect of testing is very important, and the ability to adjust to fit various launch environments.”
      The facility’s legacy stretches from the Space Shuttle Program to the International Space Station and now Artemis. Artemis II will carry a crew of four around the Moon to confirm systems operate as designed in the deep space environment. The mission will pave the way to way for lunar surface missions, establish long-term lunar science and exploration capabilities, and inspire the next generation of explorers.
      The Hot Gas Facility validates critical safety measures for the mission, with testing primarily focused on TPS, spray-on foam insulation, and other materials protecting the SLS (Space Launch System) rocket and the Orion spacecraft.
      “These are crewed missions,” Thompson said. “Mitigating and understanding risks as much as possible is part of the job. Getting these materials in these environments to make sure they are capable of withstanding and still performing is important.”
      A prime example of the facility’s capability was 2022 testing for the Human Exploration Development and Operations Office for the Commercial Crew Program. A joint test series with SpaceX, proposed by Thompson, was a seven-month campaign with launch vehicles that would carry astronauts to and from the space station, with 185 test runs.
      “We set up a test campaign that would allow us to find a way to test components and materials for multiple flights and have a safe vehicle for a crewed flight,” Thompson said.
      Hot Gas Facility, where their motto is “how hot and how long,” has operated at Marshall since 1971, evolving over the years to incorporate lessons learned from previous designs. “Testing here focuses on improving TPS design to make it safer for astronauts,” Thompson said. “Astronauts do the hard work in space. The testing we do on the ground informs the decisions we make to get them there safely. Capabilities like those we have at the Hot Gas Facility are our primary tool for preparing for the unknown.”
      Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.
      › Back to Top
      NASA Announces Winners of Inaugural Human Lander Challenge
      NASA’s 2024 Human Lander Challenge (HuLC) Forum brought 12 university teams from across the United States to Huntsville, near the agency’s Marshall Space Flight Center, to showcase their innovative concepts for addressing the complex issue of managing lunar dust. The 12 finalists, selected in March 2024, presented their final presentations to a panel of NASA and industry experts from NASA’s Human Landing Systems Program at the HuLC Forum in Huntsville June 25-27.
      Twelve university teams gathered in Huntsville, near NASA’s Marshall Space Flight Center, June 25-27, to participate in the final round of NASA’s 2024 Human Lander Challenge (HuLC) Forum.NASA/Ken Hall NASA’s lunar exploration campaign Artemis is working to send the first woman, first person of color, and first international partner astronaut to the Moon and establish long-term lunar science and exploration capabilities. Dust mitigation during landing is one of the key challenges NASA and its Artemis partners will have to address in exploring the lunar South Pole region and establishing a long-term human presence on the Moon. Participants in the 2024 Human Lander Challenge developed proposed systems-level solutions that could be potentially implemented within the next 3-5 years to manage or prevent clouds of dust – called lunar plume surface interaction – that form as a spacecraft touches down on the Moon.
      NASA announced the University of Michigan team, with their project titled, “ARC-LIGHT: Algorithm for Robust Characterization of Lunar Surface Imaging for Ground Hazards and Trajectory” as the selected overall winner and recipient of a $10,000 award June 27.
      The University of Illinois, Urbana-Champaign took second place and a $5,000 award with their project, “HINDER: Holistic Integration of Navigational Dynamics for Erosion Reduction,” followed by University of Colorado Boulder for their project, “Lunar Surface Assessment Tool (LSAT): A Simulation of Lunar Dust Dynamics for Risk Analysis,” and a $3,000 award.
      “Managing and reducing the threat of lunar dust is a formidable challenge to NASA and we are committed to real solutions for our long long-term presence on the Moon’s surface,” said Don Krupp, associate program manager for the HLS Program at Marshall. “A key part of NASA’s mission is to build the next generation of explorers and expand our partnerships across commercial industry and the academic community to advance HLS technologies, concepts, and approaches. The Human Lander Challenge is a great example of our unique partnership with the academic community as they help provide innovative and real solutions to the unique risks and challenges of returning to the Moon.”
      NASA selected the University of Michigan as the overall winner of NASA’s 2024 Human Lander Challenge (HuLC) Forum.NASA/Ken Hall Two teams received the excellence in systems engineering award:
      Texas A&M University, “Synthetic Orbital Landing Area for Crater Elimination (SOLACE) Embry-Riddle Aeronautical University, Prescott, “Plume Additive for Reducing Surface Ejecta and Cratering (PARSEC) “The caliber of solutions presented by the finalist teams to address the challenges of lunar-plume surface interaction is truly commendable,” said Esther Lee, HuLC judging panel chair and aerospace engineer at NASA’s Langley Research Center. “Witnessing the development of these concepts is an exciting glimpse into the promising future of aerospace leadership. It’s inspiring to see so many brilliant minds coming together to solve the challenges of lunar landings and exploration. We may all come from different educational backgrounds, but our shared passion for space unites us.”
      Student and faculty advisor participants had the opportunity to network and interact with NASA and industry subject matter experts who are actively working on NASA’s Human Landing System capabilities giving participants a unique insight to careers and operations that further the Agency’s mission of human space exploration.
      NASA’s Human Lander Challenge is sponsored by Human Landing System Program and managed by the National Institute of Aerospace. 
      Learn more about NASA Exploration Systems Development Mission Directorate.
      › Back to Top
      Six Adapters for Crewed Artemis Flights Tested, Built at Marshall
      As a child learning about basic engineering, you probably tried and failed to join a square-shaped toy with a circular-shaped toy: you needed a third shape to act as an adapter and connect them both together. On a much larger scale, integration of NASA’s powerful SLS (Space Launch System) rocket and the Orion spacecraft for the agency’s Artemis campaign would not be possible without the adapters being built, tested, and refined at NASA’s Marshall Space Flight Center.
      Six adapters for the next of NASA’s SLS (Space Launch System) rockets for Artemis II through Artemis IV are currently at NASA’s Marshall Space Flight Center. Engineers are analyzing data and applying lessons learned from extensive in-house testing and the successful uncrewed Artemis I test flight to improve future iterations of the rocket.NASA/Sam Lott Marshall is currently home to six adapters designed to connect SLS’s upper stages with the core stages and propulsion systems for future Artemis flights to the Moon.
      The first three Artemis flights use the SLS Block 1 rocket variant, which can send more than 27 metric tons (59,500 pounds) to the Moon in a single launch with the assistance of the interim cryogenic propulsion stage. The propulsion stage is sandwiched between two adapters: the launch vehicle stage adapter and the Orion stage adapter.
      The cone-shaped launch vehicle stage adapter provides structural strength and protects the rocket’s flight computers and other delicate systems from acoustic, thermal, and vibration effects.
      “The inside of the launch vehicle stage adapter for the SLS rocket uses orthogrid machining – also known as waffle pattern machining,” said Keith Higginbotham, launch vehicle stage adapter hardware manager supporting the SLS Spacecraft/Payload Integration & Evolution Office at Marshall. “The aluminum alloy plus the grid pattern is lightweight but also very strong.”
      Following the first flight of SLS with Artemis I, technicians adjusted their approach to assembling the launch vehicle stage adapter by introducing the use of a rounding tool to ensure that no unintended forces are placed on the hardware.NASA/Sam Lott The launch vehicle stage adapter for Artemis II is at Marshall and ready for shipment to NASA’s Kennedy Space Center, while engineering teams are completing outfitting and integration work on the launch vehicle stage adapter for Artemis III. These cone-shaped adapters differ from their Artemis I counterpart, featuring additional avionics protection for crew safety.
      Just a few buildings over, the Orion stage adapter for Artemis II, with its unique docking target that mimics the target on the interim cryogenic propulsion stage to test Orion’s handling during the piloting demonstration test, is in final outfitting prior to shipment to Kennedy for launch preparations. The five-foot-tall, ring-shaped adapter is small but mighty: in addition to having space to accommodate small secondary payloads, it contains a diaphragm that acts as a barrier to prevent gases generated during launch from entering Orion.
      The Artemis III Orion stage adapter’s major structure is complete and its avionics unit and diaphragm will be installed later this year.  
      The Orion stage adapter is complete at Marshall, including welding, painting, and installation of the secondary payload brackets, cables, and avionics unit. The adapter is protected by a special conductive paint that prevents electric arcing in space. NASA astronauts Reid Wiseman and Christina Koch viewed the hardware during a Nov. 27 visit to Marshall.NASA/Charles Beason Beginning with Artemis IV, a new configuration of SLS, the SLS Block 1B, will use the new, more powerful exploration upper stage to enable more ambitious missions to deep space. The new stage requires new adapters.
      The cone-shaped payload adapter – containing two aluminum rings and eight composite panels made from a graphite epoxy material – will be housed inside the universal stage adapter atop the rocket’s exploration upper stage.
      The payload adapter test article is being twisted, shaken, and placed under extreme pressure to check its structural strength as part of testing at Marshall. Engineers are making minor changes to the design of the flight article, such as the removal of certain vent holes, based on the latest analyses.
      SLS Block 1B’s payload adapter is an evolution from the Orion stage adapter used in the Block 1 configuration, but each will be unique and customized to fit individual mission needs. “Both the Orion stage adapter and the payload adapter are being assembled in the same room at Marshall,” said Brent Gaddes, lead for the Orion stage adapter in the Spacecraft/Payload Integration & Evolution Office at Marshall. “So, there’s a lot of cross-pollination between teams.”NASA/Sam Lott The sixth adapter at Marshall is a development test article of the universal stage adapter, which will be the largest composite structure from human spaceflight missions ever flown at 27.5 feet in diameter and 32 feet long. It is currently undergoing modal and structural testing to ensure it is light, strong, and ready to connect SLS Block 1B’s exploration upper stage to Orion.
      “Every pound of structure is equal to a pound of payload,” says Tom Krivanek, universal stage adapter sub-element project manager at NASA’s Glenn Research Center. Glenn manages the adapter for the agency. “That’s why it’s so valuable that the universal stage adapter be as light as possible. The universal stage adapter separates after the translunar insertion, so NASA will need to demonstrate the ability to separate cleanly in orbit in very cold conditions.”
      With its multipurpose testing equipment, innovative manufacturing processes, and large-scale integration facilities, Marshall facilities and capabilities enable teams to process composite hardware elements for multiple Artemis missions in parallel, providing for cost and schedule savings.
      Unlike the flight hardware, the universal stage adapter’s development test article has flaws intentionally included in its design to test if fracture toughness predictions are correct. Technicians are incorporating changes for the next test article, including alterations to the vehicle damping system mitigating vibrations on the launch pad.NASA/Brandon Hancock Lessons learned from testing and manufacturing hardware for the first three SLS flights in the Block 1 configuration have aided in designing and integrating the SLS Block 1B configuration.
      Both adapters for the SLS Block 1 are manufactured using friction stir welding in Marshall’s Materials and Processes Laboratory, a process that very reliably produces materials that are typically free of flaws.  
      Pioneering techniques such as determinant assembly and digital tooling ensure an efficient and uniform manufacturing process and save NASA and its partners money and time when building Block 1B’s payload adapter. Structured light scanning maps each panel and ring individually to create a digital model informing technicians where holes should be drilled.
      “Once the holes are put in with a hand drill located by structured light, it’s simply a matter of holding the pieces together and dropping fasteners in place,” Gaddes said. “It’s kind of like an erector set.”
      From erector sets to the Moon and beyond – the principles of engineering are the same no matter what you are building.
      › Back to Top
      Juno Gets a Close-Up Look at Lava Lakes on Jupiter’s Moon Io
      New findings from NASA’s Juno probe provide a fuller picture of how widespread the lava lakes are on Jupiter’s moon Io and include first-time insights into the volcanic processes at work there. These results come courtesy of Juno’s Jovian Infrared Auroral Mapper (JIRAM) instrument, contributed by the Italian Space Agency, which “sees” in infrared light. Researchers published a paper on Juno’s most recent volcanic discoveries on June 20 in the journal Nature Communications Earth and Environment.
      The JunoCam instrument aboard NASA’s Juno spacecraft captured two volcanic plumes rising above the horizon of Jupiter’s moon Io. The image was taken Feb. 3 from a distance of about 2,400 miles.Image data: NASA/JPL-Caltech/SwRI/MSSS, Image processing by Andrea Luck (CC BY) Io has intrigued the astronomers since 1610, when Galileo Galilei first discovered the Jovian moon, which is slightly larger than Earth’s Moon. Some 369 years later, NASA’s Voyager 1 spacecraft captured a volcanic eruption on the moon. Subsequent missions to Jupiter, with more Io flybys, discovered additional plumes – along with lava lakes. Scientists now believe Io, which is stretched and squeezed like an accordion by neighboring moons and massive Jupiter itself, is the most volcanically active world in the solar system. But while there are many theories on the types of volcanic eruptions across the surface of the moon, little supporting data exists.
      In both May and October 2023, Juno flew by Io, coming within about 21,700 miles and 8,100 miles, respectively. Among Juno’s instruments getting a good look at the beguiling moon was JIRAM.
      Designed to capture the infrared light (which is not visible to the human eye) emerging from deep inside Jupiter, JIRAM probes the weather layer down to 30 to 45 miles below the gas giant’s cloud tops. But during Juno’s extended mission, the mission team has also used the instrument to study the moons Io, Europa, Ganymede, and Callisto. The JIRAM Io imagery showed the presence of bright rings surrounding the floors of numerous hot spots.
      “The high spatial resolution of JIRAM’s infrared images, combined with the favorable position of Juno during the flybys, revealed that the whole surface of Io is covered by lava lakes contained in caldera-like features,” said Alessandro Mura, a Juno co-investigator from the National Institute for Astrophysics in Rome. “In the region of Io’s surface in which we have the most complete data, we estimate about 3% of it is covered by one of these molten lava lakes.” (A caldera is a large depression formed when a volcano erupts and collapses.)
      JIRAM’s Io flyby data not only highlights the moon’s abundant lava reserves, but also provides a glimpse of what may be going on below the surface. Infrared images of several Io lava lakes show a thin circle of lava at the border, between the central crust that covers most of the lava lake and the lake’s walls. Recycling of melt is implied by the lack of lava flows on and beyond the rim of the lake, indicating that there is a balance between melt that has erupted into the lava lakes and melt that is circulated back into the subsurface system.
      Infrared data collected Oct. 15, 2023, by the JIRAM instrument aboard NASA’s Juno shows Chors Patera, a lava lake on Jupiter’s moon Io. The team believes the lake is largely covered by a thick, molten crust, with a hot ring around the edges where lava from Io’s interior is directly exposed to space.NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM/MSSS “We now have an idea of what is the most frequent type of volcanism on Io: enormous lakes of lava where magma goes up and down,” Mura said. “The lava crust is forced to break against the walls of the lake, forming the typical lava ring seen in Hawaiian lava lakes. The walls are likely hundreds of meters high, which explains why magma is generally not observed spilling out of the paterae” – bowl-shaped features created by volcanism – “and moving across the moon’s surface.”
      JIRAM data suggests that most of the surface of these Io hot spots is composed of a rocky crust that moves up and down cyclically as one contiguous surface due to the central upwelling of magma. In this hypothesis, because the crust touches the lake’s walls, friction keeps it from sliding, causing it to deform and eventually break, exposing lava just below the surface.
      An alternative hypothesis remains in play: Magma is welling up in the middle of the lake, spreading out and forming a crust that sinks along the rim of the lake, exposing lava.
      “We are just starting to wade into the JIRAM results from the close flybys of Io in December 2023 and February 2024,” said Scott Bolton, principal investigator for Juno at the Southwest Research Institute in San Antonio. “The observations show fascinating new information on Io’s volcanic processes. Combining these new results with Juno’s longer-term campaign to monitor and map the volcanoes on Io’s never-before-seen north and south poles, JIRAM is turning out to be one of the most valuable tools to learn how this tortured world works.”
      Juno executed its 62nd flyby of Jupiter – which included an Io flyby at an altitude of about 18,175 miles – on June 13. The 63rd flyby of the gas giant is scheduled for July 16.
      NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center for the agency’s Science Mission Directorate. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft.
      › Back to Top
      Surprising Phosphate Finding in NASA’s OSIRIS-REx Asteroid Sample
      Scientists have eagerly awaited the opportunity to dig into the 4.3-ounce (121.6-gram) pristine asteroid Bennu sample collected by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer) mission since it was delivered to Earth last fall. They hoped the material would hold secrets of the solar system’s past and the prebiotic chemistry that might have led to the origin of life on Earth. An early analysis of the Bennu sample, published June 26 in Meteoritics & Planetary Science, demonstrates this excitement was warranted.
      A tiny fraction of the asteroid Bennu sample returned by NASA’s OSIRIS-REx mission, shown in microscope images. The top-left pane shows a dark Bennu particle, about a millimeter long, with an outer crust of bright phosphate. The other three panels show progressively zoomed-in views of a fragment of the particle that split off along a bright vein containing phosphate, captured by a scanning electron microscope.From Lauretta & Connolly et al. (2024) Meteoritics & Planetary Science, doi:10.1111/maps.14227. The OSIRIS-REx Sample Analysis Team found that Bennu contains the original ingredients that formed our solar system. The asteroid’s dust is rich in carbon and nitrogen, as well as organic compounds, all of which are essential components for life as we know it. The sample also contains magnesium-sodium phosphate, which was a surprise to the research team, because it wasn’t seen in the remote sensing data collected by the spacecraft at Bennu. Its presence in the sample hints that the asteroid could have splintered off from a long-gone, tiny, primitive ocean world.
      Analysis of the Bennu sample unveiled intriguing insights into the asteroid’s composition. Dominated by clay minerals, particularly serpentine, the sample mirrors the type of rock found at mid-ocean ridges on Earth, where material from the mantle, the layer beneath Earth’s crust, encounters water.
      This interaction doesn’t just result in clay formation; it also gives rise to a variety of minerals like carbonates, iron oxides, and iron sulfides. But the most unexpected discovery is the presence of water-soluble phosphates. These compounds are components of biochemistry for all known life on Earth today.
      While a similar phosphate was found in the asteroid Ryugu sample delivered by JAXA’s (Japan Aerospace Exploration Agency) Hayabusa2 mission in 2020, the magnesium-sodium phosphate detected in the Bennu sample stands out for its purity – that is, the lack of other materials in the mineral – and the size of its grains, unprecedented in any meteorite sample.
      The finding of magnesium-sodium phosphates in the Bennu sample raises questions about the geochemical processes that concentrated these elements and provides valuable clues about Bennu’s historic conditions.
      “The presence and state of phosphates, along with other elements and compounds on Bennu, suggest a watery past for the asteroid,” said Dante Lauretta, co-lead author of the paper and principal investigator for OSIRIS-REx at the University of Arizona, Tucson. “Bennu potentially could have once been part of a wetter world. Although, this hypothesis requires further investigation.”
      “OSIRIS-REx gave us exactly what we hoped: a large pristine asteroid sample rich in nitrogen and carbon from a formerly wet world,” said Jason Dworkin, a co-author on the paper and the OSIRIS-REx project scientist at NASA’s Goddard Space Flight Center.
      Despite its possible history of interaction with water, Bennu remains a chemically primitive asteroid, with elemental proportions closely resembling those of the Sun.
      “The sample we returned is the largest reservoir of unaltered asteroid material on Earth right now,” Lauretta said.
      This composition offers a glimpse into the early days of our solar system, over 4.5 billion years ago. These rocks have retained their original state, having neither melted nor resolidified since their inception, affirming their ancient origins.
      The team has confirmed the asteroid is rich in carbon and nitrogen. These elements are crucial in understanding the environments where Bennu’s materials originated and the chemical processes that transformed simple elements into complex molecules, potentially laying the groundwork for life on Earth.
      “These findings underscore the importance of collecting and studying material from asteroids like Bennu – especially low-density material that would typically burn up upon entering Earth’s atmosphere,” Lauretta said. “This material holds the key to unraveling the intricate processes of solar system formation and the prebiotic chemistry that could have contributed to life emerging on Earth.”
      Dozens more labs in the United States and around the world will receive portions of the Bennu sample from NASA’s Johnson Space Center in the coming months, and many more scientific papers describing analyses of the Bennu sample are expected in the next few years from the OSIRIS-REx Sample Analysis Team.
      “The Bennu samples are tantalizingly beautiful extraterrestrial rocks,” said Harold Connolly, co-lead author on the paper and OSIRIS-REx mission sample scientist at Rowan University in Glassboro, New Jersey. “Each week, analysis by the OSIRIS-REx Sample Analysis Team provides new and sometimes surprising findings that are helping place important constraints on the origin and evolution of Earth-like planets.”
      Launched on Sept. 8, 2016, the OSIRIS-REx spacecraft traveled to near-Earth asteroid Bennu and collected a sample of rocks and dust from the surface. OSIRIS-REx, the first U.S. mission to collect a sample from an asteroid, delivered the sample to Earth on Sept. 24, 2023.
      NASA’s Goddard Space Flight Center provided overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. The university leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft and provided flight operations. Goddard and KinetX Aerospace were responsible for navigating the OSIRIS-REx spacecraft. Curation for OSIRIS-REx takes place at NASA Johnson. International partnerships on this mission include the OSIRIS-REx Laser Altimeter instrument from CSA (Canadian Space Agency) and asteroid sample science collaboration with JAXA’s Hayabusa2 mission. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center for the agency’s Science Mission Directorate.
      › Back to Top
      Webb Captures Celestial Fireworks Around Forming Star
      The cosmos seems to come alive with a crackling explosion of pyrotechnics in this new image from NASA’s James Webb Space Telescope. Taken with Webb’s MIRI (Mid-Infrared Instrument), this fiery hourglass marks the scene of a very young object in the process of becoming a star. A central protostar grows in the neck of the hourglass, accumulating material from a thin protoplanetary disk, seen edge-on as a dark line.
      L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. The more diffuse blue light and the filamentary structures in the image come from organic compounds known as polycyclic aromatic hydrocarbons (PAHs), while the red at the center of this image is an energized, thick layer of gases and dust that surrounds the protostar. The region in between, which shows up in white, is a mixture of PAHs, ionized gas, and other molecules. This image includes filters representing 7.7 microns light as blue, 12.8 microns light as green, and 18 microns light as red. NASA, ESA, CSA, STScI The protostar, a relatively young object of about 100,000 years, is still surrounded by its parent molecular cloud, or large region of gas and dust. Webb’s previous observation of L1527, with NIRCam (Near-Infrared Camera), allowed us to peer into this region and revealed this molecular cloud and protostar in opaque, vibrant colors.
      Both NIRCam and MIRI show the effects of outflows, which are emitted in opposite directions along the protostar’s rotation axis as the object consumes gas and dust from the surrounding cloud. These outflows take the form of bow shocks to the surrounding molecular cloud, which appear as filamentary structures throughout. They are also responsible for carving the bright hourglass structure within the molecular cloud as they energize, or excite, the surrounding matter and cause the regions above and below it to glow. This creates an effect reminiscent of fireworks brightening a cloudy night sky. Unlike NIRCam, however, which mostly shows the light that is reflected off dust, MIRI provides a look into how these outflows affect the region’s thickest dust and gases.
      The areas colored here in blue, which encompass most of the hourglass, show mostly carbonaceous molecules known as polycyclic aromatic hydrocarbons. The protostar itself and the dense blanket of dust and a mixture of gases that surround it are represented in red. (The sparkler-like red extensions are an artifact of the telescope’s optics). In between, MIRI reveals a white region directly above and below the protostar, which doesn’t show as strongly in the NIRCam view. This region is a mixture of hydrocarbons, ionized neon, and thick dust, which shows that the protostar propels this matter quite far away from it as it messily consumes material from its disk.
      As the protostar continues to age and release energetic jets, it’ll consume, destroy, and push away much of this molecular cloud, and many of the structures we see here will begin to fade. Eventually, once it finishes gathering mass, this impressive display will end, and the star itself will become more apparent, even to our visible-light telescopes.
      The combination of analyses from both the near-infrared and mid-infrared views reveal the overall behavior of this system, including how the central protostar is affecting the surrounding region. Other stars in Taurus, the star-forming region where L1527 resides, are forming just like this, which could lead to other molecular clouds being disrupted and either preventing new stars from forming or catalyzing their development.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).  Several NASA centers contributed to the project, including NASA’s Marshall Space Flight Center.
      › Back to Top
      Enhancing Decision-Making with NASA SPoRT: From Earth Science to Action
      By Paola Pinto
      During summer months, lightning-related injuries and fatalities rise mainly because of the increase in outdoor activities. Staying informed and cautious is crucial to ensure safety during these times. That is why making timely decisions and preventing potential hazards using tools like the Stoplight Product from NASA’s Short-term Prediction Research and Transition (SPoRT) Center is so important.
      Fatal lightning incidents by month according to the National Lightning Safety Council. NASA/National Lightning Safety Council For instance, at last year’s Rock the South concert in Cullman, Alabama, the National Weather Service (NWS) in Huntsville used the Stoplight Product to effectively communicate the lightning threat to concert emergency managers, demonstrating its practical application in safeguarding public events.
      The popular sayings, “When thunder roars, go indoors” and “See a flash, dash inside,” are common reactive responses to severe weather. According to NOAA’s lightning safety protocols, waiting 30 minutes after the last lightning strike is recommended before resuming outdoor activities. However, tools like the Stoplight Product provide real-time lightning activity data, helping individuals and organizations make informed safety choices before weather conditions worsen. Whether for outdoor events, construction sites, or recreational activities, this product enables people to easily determine when lightning was last detected in their area, ensuring better safety and preparedness.
      In collaboration with NASA Marshall Space Flight Center’s Emergency Operations Center and the National Weather Service in Huntsville, SPoRT has developed innovative tools like the Stoplight Product to empower communities and organizations to take proactive preventive measures. SPoRT’s tools are part of a broader effort to transition research findings into practical applications that benefit forecasters and communities.
      Kelley Murphy, a research associate at the University of Alabama in Huntsville, frequently interacts with users to train them on how to use the NASA SPoRT Stoplight Product during convective weather events. She said the tool leverages data from the Geostationary Lightning Mapper (GLM) on NOAA’s GOES-16 satellite, which continuously monitors lightning over the United States with high resolution. The Stoplight Product visually represents recent lightning activity to help users make informed decisions about outdoor safety.
      Murphy said the Stoplight Product uses GLM Flash Extent Density data to determine the age and location of lightning flashes. GLM pixels are colored based on how recently lightning occurred, creating an easy-to-interpret visual aid of lightning within the last 30 minutes. Red indicates lightning within the last 10 minutes, yellow for 10-20 minutes, and green for 20-30 minutes, with the color disappearing after 30 minutes without lightning. There is also an option for color-blind users embedded in the tool.
      Kristopher White is the Applications Integration Meteorologist and senior forecaster at the Huntsville NWS office, spending half his time with NASA SPoRT. White plays a key role in transitioning research into operational use, coordinating the use of these tools within the NWS, and ensuring that forecasters are trained and equipped to utilize them effectively.
      NASA SPoRT Stoplight Product visually represents recent lightning activity to help users make informed decisions about outdoor safety. NASA White said this product has received positive feedback from various NWS offices across the U.S. Forecasters have reported utilizing the tool to monitor storms and make decisions during events, emphasizing its practical value in real-world scenarios.
      One forecaster from NWS Raleigh noted that they were able to warn about lightning at a 1000+ attendee event; “We were able to alert them that lightning was nearby and then gave the all-clear once it moved out of the critical area.” Another forecaster from NWS Sullivan stated, “There’s a lot of good stuff out there that we’re using to paint the picture for us and the decision-makers, but the GLM Stoplight Product has been one of our ‘go-to’s’ for assessing how long it’s been since the last flash.” This ability to provide real-time lightning information aids forecasters in relaying crucial data to emergency managers, supporting public safety efforts.
      Looking ahead, the SPoRT team is working on enhancements to the Stoplight Product, incorporating ground-based lightning detection data to improve accuracy. This new version seeks to address issues such as the parallax effect, where the satellite’s perspective can slightly shift the perceived location of lightning strikes. By combining satellite and ground-based data, the improved product will offer more precise information, enhancing its utility for lightning safety.
      As we move through the peak months of the lightning season – June, July, and August – tools like these become even more helpful. Murphy and White stress the value of using these resources for professional meteorologists and the public. The Stoplight Product is GPS-enabled and available in a custom viewer that can be accessed on both computers and mobile devices, allowing individuals to make safer choices when engaging in outdoor activities, particularly during the summer weather.
      On their seasonal outlook, NOAA’s Climate Prediction Center suggests above-normal precipitation for much of the Southeast and Eastern Seaboard this year, which could imply increased lightning activity. This emphasizes the need for reliable tools to mitigate lightning-related risks.
      Lightning Safety Awareness Week, from June 23-29, highlighted the importance of taking safety measures during peak lightning season. SPoRT’s Stoplight Product and other tools represent significant advancements in lightning detection and decision support, helping forecasters and the public stay informed and safe. As we navigate this season, utilizing these resources will be essential in reducing the impact of lightning-related hazards.
      Pinto is a research associate at the University of Alabama in Huntsville, with a focus on communications, supporting NASA SPoRT.
      › Back to Top
      View the full article
  • Check out these Videos

×
×
  • Create New...