Jump to content

Fly far, fly true


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      During the event, Bentivegna participated in a panel on stage with the film’s director, Greg Berlanti, among others, discussing the making of the movie and the inspiration drawn from the real-life Apollo 11 moon landing story.

      View the full article
    • By NASA
      7 Min Read Spectral Energies is a NASA SBIR/STTR-Funded Tech that Could Change the Way We Fly
      City scape of New York City at sunrise with multiple airplanes and other flying vehicles. Credits: NASA SBIR/STTR Editor Note: Article written by Nicholas Mercurio
      With $20 million in commercial sales and $15 million in sales to government agencies, minority-owned small business Spectral Energies, based in Beavercreek, Ohio, has found a customer base for its pulse-burst laser systems. NASA has played a significant role in developing the technology through the Small Business Innovation Research (SBIR) / Small Business Technology Transfer (STTR) program. With wide-ranging applications including metrology to support commercial aircraft certification, as well as material processing, this technology could pave the way for new forms of passenger aircraft.
      The High Cost of Aircraft Certification
      Did you know that the Boeing 737 first entered service in 1968? Yet there’s a good chance that, if you’ve flown recently, it was on a Boeing 737. That’s due in large part to the cost of certifying new airplanes, which can range in the hundreds of millions of dollars. One place to look for cost savings is the testing process.
      When testing a new design for a space vehicle or commercial aircraft, researchers use wind tunnels to simulate flight conditions. The new aircraft or aircraft component—such as a new wing design—is built, put inside the wind tunnel, and evaluated.
      NASA has long sought to develop robust modeling and prediction software to significantly reduce the need for wind tunnel testing and expensive flight testing. Such software would allow initial analysis to be done on a computer model to identify performance improvement opportunities and iterate on designs, saving the actual manufacturing and its associated costs for a design much closer to being final. Innovations in laser measurement systems could finally bring this goal within reach.
      The Limitations of Traditional Lasers and Early Pulse-Burst Laser Systems
      Entering into use in the 1980s and still widely used today, traditional commercial laser systems operate at 10 Hz, meaning they can fire 10 times per second into the air moving around an aircraft in a wind tunnel. This essentially provides a “photograph” of the air flow at that moment.
      But a tenth of a second is a long time, especially when NASA wind tunnels can test vehicles at up to ten times the speed of sound. In a tenth of a second, the pocket of air from the previous image has long since moved on, meaning the second image is capturing something completely different than the first and crucial data is lost.  
      Why is this data crucial? Because when an aircraft has stalled, it’s the air flow—how the air moves over, under, and around the aircraft—that matters. This air flow changes rapidly in time, leading to effects like stall and buffet; measurement techniques need to be able to capture these rapid changes. Without a complete, data-backed understanding of air flow moment to moment, efforts to develop accurate modeling software have stalled.
      In the late 1990s, pulse-burst laser systems came onto the scene and delivered a dramatic increase in measurement speed. These systems—developed in part with support from the NASA SBIR program—went from producing a set of photograph-like images to delivering a movie-like sequence of data. However, these early systems were difficult to transport and operate, significantly limiting their use.
      NASA SBIR/STTR phasesCredits: NASA SBIR/STTR Enhancing Usability with Air Force SBIR Funding
      By providing funding to develop early-stage technologies, the NASA SBIR/STTR program helps de-risk and develop ideas, maturing them to the point where others can continue innovating. More than a decade after helping to fund some of the earliest pulse-burst laser systems, NASA awarded Phase I SBIR funding to Spectral Energies in 2009 for further advancement of the technology.
      The firm went on to receive Phase II and Phase III SBIR funding from the U.S. Air Force, leveraging these awards to create a commercial pulse-burst laser system that was smaller, easier to transport, more resilient and reliable, and simpler to operate due to significant software advancements. Air Force funding also enabled Spectral Energies to demonstrate several new applications of the system in combustion environments.
      With this foundational work in place, the technology was ready for further innovation to help NASA pursue its long-held goal of more effective air flow measurement and modeling.
      Spectral Energies work with the NASA SBIR/STTR program
      Spectral Energies resumed its work with the NASA SBIR/STTR program in 2014 with multiple Phase I awards. Through continuing program awards, including three Phase II Extended (II-E) and three Phase III contracts, the firm added new capabilities to its pulse-burst laser system, such as high-speed two-color thermometry, demonstrated in 2020.
      Previously, two-color thermometry was typically done at 10 Hz speeds with two lasers and two cameras. Spectral Energies worked with NASA to develop this capability at high-speed using their single-laser, single-camera system, thereby enabling three- and four-dimensional (i.e., three spatial coordinates and time) temperature measurement of chemical flows, a critical capability when designing new chemical propulsion systems.
      Further collaboration with NASA yielded additional capabilities in high-speed picosecond velocimetry and two-dimensional ultraviolet spectroscopy and imaging. Adding these measurement techniques to its technology allowed Spectral Energies to make commercial inroads into hypersonic wind tunnel testing, material processing, and defense applications. Rather than modifying the pulse-burst laser system to deliver these capabilities, each enhancement took the form of an add-on that could be attached to the system, similar to how you can add apps to your smart phone or attach a new lens to your camera. These NASA SBIR-funded add-ons have increased the return on investment (ROI) for each of Spectral Energies’ customers across federal agencies, research universities, and commercial companies.
      Growing a Small Business
      For small businesses, the hunger to do more is often quelled by the reality of limited resources. As a result, necessity is often the biggest driver of decision-making: What do we need to do today to keep our doors open tomorrow? Funding from the NASA SBIR/STTR program allowed Spectral Energies to move into a different mindset and tap into their creative drive.
      “Through the NASA program, we started diversifying in hypersonic test facilities from subsonic combustion facilities,” said Dr. Sukesh Roy, CEO of Spectral Energies, “and that opened many doors for the application of this laser, from detonation to directed energies. Without the funding from NASA, it would have been impossible for us to push for versatile technological enhancements that significantly broadened the application field.” Moving into the research and development of new applications allowed the company to widen its focus and ultimately find a larger customer base.
      Spectral Energies’ continued work with the NASA SBIR/STTR program has helped the company further grow and succeed. By providing entry into new industries and new capabilities for existing customers, the add-on technologies developed with NASA SBIR-funding have generated significant commercial revenue for the small business. Additionally, these developments have opened the door for new funding opportunities with the Air Force, Navy, Army, and Missile Defense Agency.
      Without the funding from NASA, it would have been impossible for us to push for versatile technological enhancements that significantly broadened the application field.
      Dr. Sukesh Roy
      CEO of Spectral Energies
      Providing Benefit to NASA and Beyond
      Dr. Paul Danehy, Senior Technologist for Advanced Measurement Systems at NASA’s Langley Research Center, has worked with Spectral Energies on a number of projects through the program. According to Dr. Danehy, not only did NASA SBIR funding aid the company’s technology growth, program funding also made it possible for NASA researchers to make use of this technology.
      As Dr. Danehy explains, SBIR/STTR Post Phase II funding vehicles like Phase II-E and Phase III allow other programs within NASA to pool money together, then receive matching funds from the SBIR/STTR program. This matching funding increases the purchasing power of other NASA programs and has allowed the agency to acquire two of Spectral Energies’ pulse-burst laser systems, complete with add-ons.
      Agency researchers are using these pulse-burst laser systems to obtain unique quantitative flow field measurements that will allow them to refine software codes to accurately design and evaluate new aerospace vehicles. In time, these software codes could cut hundreds of millions of dollars from the certification of commercial aircraft, allowing new planes to be developed and made available to passengers faster and cheaper.
      View the full article
    • By NASA
      This image from NASA’s Lunar Reconnaissance Orbiter shows China’s Chang’e 6 lander in the Apollo basin on the far side of the Moon on June 7, 2024. The lander is the bright dot in the center of the image. The image is about 0.4 miles wide (650 meters); lunar north is up.Credit: NASA/Goddard/Arizona State University NASA’s LRO (Lunar Reconnaissance Orbiter) imaged China’s Chang’e 6 sample return spacecraft on the far side of the Moon on June 7. Chang’e 6 landed on June 1, and when LRO passed over the landing site almost a week later, it acquired an image showing the lander on the rim of an eroded, 55-yard-diameter (about 50 meters) crater. 
      The LRO Camera team computed the landing site coordinates as about 42 degrees south latitude, 206 degrees east longitude, at an elevation of about minus 3.27 miles (minus 5,256 meters).
      This before and after animation of LRO images shows the appearance of the Chang’e 6 lander. The increased brightness of the terrain surrounding the lander is due to disturbance from the lander’s engines and is similar to the blast zone seen around other lunar landers. The before image is from March 3, 2022, and the after image is from June 7, 2024.Credit: NASA/Goddard/Arizona State University The Chang’e 6 landing site is situated toward the southern edge of the Apollo basin (about 306 miles or 492 km in diameter, centered at 36.1 degrees south latitude, 208.3 degrees east longitude). Basaltic lava erupted south of Chaffee S crater about 3.1 billion years ago and flowed downhill to the west until it encountered a local topographic high, likely related to a fault. Several wrinkle ridges in this region have deformed and raised the mare surface. The landing site sits about halfway between two of these prominent ridges. This basaltic flow also overlaps a slightly older flow (about 3.3 billion years old), visible further west, but the younger flow is distinct because it has higher iron oxide and titanium dioxide abundances.
      A regional context map of the Chang’e 6 landing site. Color differences have been enhanced for clarity. The dark area is a basaltic mare deposit; bluer areas of the mare are higher-titanium flows. Contour lines marking 100-meter (about 328 feet) elevation intervals are overlaid to provide a sense of the topography. Image is about 118 miles (190 km) across. Credit: NASA/Goddard/Arizona State University LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.
      More on this story from Arizona State University's LRO Camera website Media Contact:
      Nancy N. Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAGoddard@NASAMoon@NASASolarSystem @NASAGoddard@NASAMoon@NASASolarSystem Instagram logo @NASAGoddard@NASASolarSystem Share
      Details
      Last Updated Jun 14, 2024 EditorMadison OlsonContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related Terms
      Lunar Reconnaissance Orbiter (LRO) Earth's Moon Goddard Space Flight Center Planetary Science The Solar System Explore More
      1 min read NASA’s LRO Spots Japan’s Moon Lander 
      Article 5 months ago 2 min read NASA’s LRO Images Intuitive Machine’s Odysseus Lander
      Article 4 months ago 2 min read NASA’s LRO Finds Photo Op as It Zips Past SKorea’s Danuri Moon Orbiter
      Article 2 months ago View the full article
    • By NASA
      How does spaceflight affect tumor-bearing fruit fly hosts and their parasites?
      Pigmentation: A side-by-side comparison of wasps shows a clear difference in the melanization of wing veins for wild-type and each mutant.
      Blade Shape: The kona mutant has an angular wing shape in contrast to wild-type’s rounded wing blade (vertical arrows in D–F).S. Govind. Background: Like humans, fruit flies (a model organism for spaceflight research) also exhibit immune system dysfunction in space. Despite decades of studies on fruit flies and wasps, little was known about how their immune systems interact with natural parasites in space. Drosophila parasitoid wasps modify blood cell function to suppress host immunity. In this spaceflight study (the Fruit Fly-03 Lab flown to the ISS on SpaceX-14), naive and parasitized ground and space flies from a tumor-free control and a blood tumor-bearing mutant strain were examined.
      Main Findings: Surprisingly, the flies without tumors were more sensitive to space than the flies with tumors. Spaceflight increased immune gene activity and made tumors grow more in the flies. The wasps remained harmful in space, but some developed inheritable physical changes. These changes included “aurum” (altered wing color and veins) and “kona” (altered wing shape). Female wasps with two copies of the “kona” mutation could not lay eggs because of defective egg-laying organs.
      Ovipositors from wild-type and mutant wasps.
      Homozygous kona females with defective ovipositors (used for egg laying) how areas of compromised integrity or have branched ends (arrows) compared to the continuous ovipositors with sharp ends from wild-type control wasps.S. Govind Impact: This study will Improve our knowledge of how parasites and hosts interact. The results show that we need to study more types of organisms, including plants and their natural parasites, in space. This will help us learn more about how hosts defend themselves and how dangerous parasites can be in space, which is important for astronaut health. Gene expression data from fruit flies (OSD-588) and two types of wasps (OSD-609 & OSD-610) are publicly available on NASA’s Open Science Data Repository. This data is available for anyone to use and compare with other spaceflight studies.
      Reference: Chou, J., Ramroop, J.,  Saravia-Butler, A., Wey, B., Lera, M., Torres, M., Heavner, M., Iyer, J., Mhatre, S,. Bhattacharya, S., Govind, S. Drosophila parasitoids go to space: Unexpected effects of spaceflight on hosts and their parasitoids. iScience, Volume 27, Issue 1, 2024, 108759, ISSN 2589-0042, https://doi.org/10.1016/j.isci.2023.108759
      View the full article
    • By European Space Agency
      Video: 00:03:29 Mars’s surface is covered in all manner of scratches and scars. Its many marks include the fingernail scratches of Tantalus Fossae, the colossal canyon system of Valles Marineris, the oddly orderly ridges of Angustus Labyrinthus, and the fascinating features captured in today’s video release from Mars Express: the cat scratches of Nili Fossae.
      Nili Fossae comprises parallel trenches hundreds of metres deep and several hundred kilometres long, stretching out along the eastern edge of a massive impact crater named Isidis Planitia.
      This new video features observations from Mars Express's High Resolution Stereo Camera (HRSC). It first flies northwards towards and around these large trenches, showing their fractured, uneven appearance, before turning back to head southwards. It ends by zooming out to a ‘bird’s eye’ view, with the landing site of NASA’s Perseverance rover, Jezero Crater, visible in the lower-middle part of the final scene. (You can explore this crater further via ESA’s interactive map.)
      The trenches of Nili Fossae are actually features known as ‘graben’, which form when the ground sitting between two parallel faults fractures and falls away. As the graben seem to curve around Isidis Planitia, it’s likely that they formed as Mars’s crust settled following the formation of the crater by an incoming space rock hitting the surface. Similar ruptures – the counterpart to Nili Fossae – are found on the other side of the crater, and named Amenthes Fossae.
      Scientists have focused on Nili Fossae in recent years due to the impressive amount and diversity of minerals found in this area, including silicates, carbonates, and clays (many of which were discovered by Mars Express’s OMEGA instrument). These minerals form in the presence of water, indicating that this region was very wet in ancient martian history. Much of the ground here formed over 3.5 billion years ago, when surface water was abundant across Mars. Scientists believe that water flowed not only across the surface here but also beneath it, forming underground hydrothermal flows that were heated by ancient volcanoes.
      Because of what it could tell us about Mars’s ancient and water-rich past, Nili Fossae was considered as a possible landing site for NASA’s Curiosity rover, before the rover was ultimately sent to Gale Crater in 2012. Another mission, NASA’s Perseverance rover, was later sent to land in the nearby Jezero Crater, visible at the end of this video.
      Mars Express has visited Nili Fossae before, imaging the region’s graben system back in 2014. The mission has orbited the Red Planet since 2003, imaging Mars’s surface, mapping its minerals, studying its tenuous atmosphere, probing beneath its crust, and exploring how various phenomena interact in the martian environment. For more from the orbiter and its HRSC, see ESA's Mars Express releases.
      Disclaimer: This video is not representative of how Mars Express flies over the surface of Mars. See processing notes below.
      Processing notes: The video is centred at 23°N, 78°E. It was created using Mars Chart (HMC30) data, an image mosaic made from single-orbit observations from Mars Express’s HRSC. This mosaic was combined with topography derived from a digital terrain model of Mars to generate a three-dimensional landscape. For every second of the movie, 62.5 separate frames are rendered following a pre-defined camera path. The vertical exaggeration is three-fold. Atmospheric effects – clouds and haze – have been added, and start building up at a distance of 50 km.
      Click here for the original video created by Freie Universität Berlin, who use Mars Express data to prepare spectacular views of the martian surface. The original version has no voiceover, captions or ESA logo.
      View the full article
  • Check out these Videos

×
×
  • Create New...