Members Can Post Anonymously On This Site
Forward to the Moon: An interactive publication about our natural satellite!
-
Similar Topics
-
By NASA
NASA’s Glenn Research Center in Cleveland provides ground test facilities to industry, government, and academia specializing in the following:
Acoustics Engine Components Testing Full-Scale Engine Testing Flight Research Icing Research Materials and Structures Microgravity Space Power and Propulsion Wind Tunnels Electromagnetic Interference Laboratory Our unique facilities offer superior customer service, flexible scheduling, and state-of-the-art testing capabilities.
Facility Request Process
Customer contacts the facility manager and/or submits a test request form. See below for the Facility Request Form. The facility manager will contact the customer to discuss the request and obtain detailed test requirements. After test requirements and schedule are finalized, the facility manager will provide a high-fidelity cost estimate for review and prepare a formal agreement for signature. Once the agreement is signed by both NASA Glenn and the customer, and the work is funded, the test execution may begin per the agreement. If you need further information about our facility capabilities or the general testing process, please complete the form below to have your inquiry answered or contact Michael McVetta at 216-433-2832.
Facility Request Form
If you are considering testing in one of our facilities or would like further information about a specific facility or capability, please let us know:
* indicates a required field
Name* First Last Organization*Work Phone*Work Email* Facility*If you are not sure of the facility you need, simply indicate that below. I'm not sure10×10 Supersonic Wind Tunnel1×1 Supersonic Wind Tunnel8×6 Wind Tunnel9×16 Wind Tunnel2.2 Second Drop TowerAero-Acoustic Propulsion LaboratoryAdvanced Subsonic Combustion RigCombined Effects ChamberElectric Propulsion LaboratoryElectric Propulsion Research BuildingElectromagnetic Interference LaboratoryEngine Research Building and Related FacilitiesFlight Research BuildingHypersonic Tunnel FacilityIcing Research TunnelIn-Space Propulsion FacilityPropulsion Systems LaboratoryStructural Dynamics LaboratoryStructural Static LaboratoryZero Gravity Research FacilityAdditional CommentsNameThis field is for validation purposes and should be left unchanged. View the full article
-
By European Space Agency
Just a week after its launch, ESA’s Biomass mission has reached another critical milestone on its path to delivering unprecedented insights into the world’s forests and their vital role in Earth’s carbon cycle – the satellite’s 12-metre-diameter antenna is now fully deployed.
View the full article
-
By NASA
Technicians move the Orion spacecraft for NASA’s Artemis II test flight out of the Neil A. Armstrong Operations and Checkout Building to the Multi-Payload Processing Facility at Kennedy Space Center in Florida on Saturday, May 3, 2025. NASA/Kim Shiflett Engineers, technicians, mission planners, and the four astronauts set to fly around the Moon next year on Artemis II, NASA’s first crewed Artemis mission, are rapidly progressing toward launch.
At the agency’s Kennedy Space Center in Florida, teams are working around the clock to move into integration and final testing of all SLS (Space Launch System) and Orion spacecraft elements. Recently they completed two key milestones – connecting the SLS upper stage with the rest of the assembled rocket and moving Orion from its assembly facility to be fueled for flight.
“We’re extremely focused on preparing for Artemis II, and the mission is nearly here,” said Lakiesha Hawkins, assistant deputy associate administrator for NASA’s Moon to Mars Program, who also will chair the mission management team during Artemis II. “This crewed test flight, which will send four humans around the Moon, will inform our future missions to the Moon and Mars.”
Teams with NASA’s Exploration Ground Systems Program begin integrating the interim cryogenic propulsion stage to the SLS (Space Launch System) launch vehicle stage adapter on Wednesday, April 30, 2025, inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. NASA/Isaac Watson On May 1, technicians successfully attached the interim cryogenic propulsion stage to the SLS rocket elements already poised atop mobile launcher 1, including its twin solid rocket boosters and core stage, inside the spaceport’s Vehicle Assembly Building (VAB). This portion of the rocket produces 24,750 pounds of thrust for Orion after the rest of the rocket has completed its job. Teams soon will move into a series of integrated tests to ensure all the rocket’s elements are communicating with each other and the Launch Control Center as expected. The tests include verifying interfaces and ensuring SLS systems work properly with the ground systems.
Meanwhile, on May 3, Orion left its metaphorical nest, the Neil Armstrong Operations & Checkout Facility at Kennedy, where it was assembled and underwent initial testing. There the crew module was outfitted with thousands of parts including critical life support systems for flight and integrated with the service module and crew module adapter. Its next stop on the road to the launch pad is the Multi-Payload Processing Facility, where it will be carefully fueled with propellants, high pressure gases, coolant, and other fluids the spacecraft and its crew need to maneuver in space and carry out the mission.
After fueling is complete, the four astronauts flying on the mission around the Moon and back over the course of approximately 10 days, will board the spacecraft in their Orion Crew Survival System spacesuits to test all the equipment interfaces they will need to operate during the mission. This will mark the first time NASA’s Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, will board their actual spacecraft while wearing their spacesuits. After the crewed testing is complete, technicians will move Orion to Kennedy’s Launch Abort System Facility, where the critical escape system will be added. From there, Orion will move to the VAB to be integrated with the fully assembled rocket.
NASA also announced its second agreement with an international space agency to fly a CubeSat on the mission. The collaborations provide opportunities for other countries to work alongside NASA to integrate and fly technology and experiments as part of the agency’s Artemis campaign.
While engineers at Kennedy integrate and test hardware with their eyes on final preparations for the mission, teams responsible for launching and flying the mission have been busy preparing for a variety of scenarios they could face.
The launch team at Kennedy has completed more than 30 simulations across cryogenic propellant loading and terminal countdown scenarios. The crew has been taking part in simulations for mission scenarios, including with teams in mission control. In April, the crew and the flight control team at NASA’s Johnson Space Center in Houston simulated liftoff through a planned manual piloting test together for the first time. The crew also recently conducted long-duration fit checks for their spacesuits and seats, practicing several operations while under various suit pressures.
NASA astronaut Christina Koch participates in a fit check April 18, 2025, in the spacesuit she will wear during Artemis II. NASA/Josh Valcarcel Teams are heading into a busy summer of mission preparations. While hardware checkouts and integration continue, in coming months the crew, flight controllers, and launch controllers will begin practicing their roles in the mission together as part of integrated simulations. In May, the crew will begin participating pre-launch operations and training for emergency scenarios during launch operations at Kennedy and observe a simulation by the launch control team of the terminal countdown portion of launch. In June, recovery teams will rehearse procedures they would use in the case of a pad or ascent abort off the coast of Florida, with launch and flight control teams supporting. The mission management team, responsible for reviewing mission status and risk assessments for issues that arise and making decisions about them, also will begin practicing their roles in simulations. Later this summer, the Orion stage adapter will arrive at the VAB from NASA’s Marshall Spaceflight Center in Huntsville, Alabama, and stacked on top of the rocket.
NASA astronauts Reid Wiseman (foreground) and Victor Glover participate in a simulation of their Artemis II entry profile on March 13, 2025.NASA/Bill Stafford Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
View the full article
-
By NASA
A first-generation college graduate, Nilufar Ramji was blazing trails long before arriving at NASA. With her multifaceted expertise, she is helping shape the messaging behind humanity’s return to the Moon, Mars, and beyond.
Ramji is currently on detail as the co-executive producer for NASA’s live broadcasts, ensuring the agency’s missions and discoveries are clearly and effectively communicated to the public. Through her work, she expands understanding of what space exploration means for all—and why it matters.
Official portrait of Nilufar Ramji. NASA/Josh Valcarcel Before stepping into her acting role, Ramji served as the lead public affairs officer for Moon to Mars activities at NASA’s Johnson Space Center in Houston. She spearheaded communication strategies for the Commercial Lunar Payload Services initiative, which works with private companies to deliver science and technology payloads to the lunar surface. She has also provided live commentary for International Space Station operations to learn and prepare for Artemis missions.
Ramji played a pivotal role in communicating NASA’s involvement in two major lunar missions in 2025 including Firefly Aerospace’s Blue Ghost Mission 1 which successfully delivered 10 NASA payloads to the Moon’s Mare Crisium on March 2. Ramji served as the live mission commentator, helping audiences around the world follow the historic moment—from lunar orbit insertion to touchdown. She also led communications for Intuitive Machines’ IM-2 mission, which landed near the Moon’s South Pole on March 6, marking the southernmost lunar landing ever achieved.
Nilufar Ramji, left, and Brigette Oakes, vice president of engineering at Firefly Aerospace, in the company’s mission operations center in Cedar Park, Texas, during the Blue Ghost Mission 1 lunar landing. NASA/Helen Arase Vargas Early in her NASA career, she led agencywide STEM communications, shaping how NASA connects with students and educators. As a lead strategist, she developed messaging that made science and technology more accessible to younger audiences—helping inspire the Artemis Generation.
“Being one of the storytellers behind humanity’s return to the Moon is something I take pride in,” she said. “People don’t realize what exploring our solar system has done for us here on Earth. Going to the Moon and onto Mars will bring that message home.”
Nilufar Ramji, left, and Aliyah Craddock, digital media lead for NASA Science in the Science Mission Directorate, in the Astromaterials Research and Exploration Science laboratory at NASA’s Johnson Space Center in Houston. NASA Ramji communicates not just the science of space, but its greater significance. “How can we be thoughtful in our communications?” is a question that drives her approach. Whether guiding a live broadcast or developing messaging about lunar science, she is constantly evaluating, executing, and refining NASA’s voice.
She also understands the importance of commercial partnerships in expanding human presence in space. “It’s exciting to see how many different people and organizations come together to make this a reality,” she said. “By creating a larger space economy, we’re able to do things faster and cheaper and still accomplish the same goals to make sure we’re all successful.”
Nilufar Ramji presents a TedX Talk, “Storytelling from Space” in Sugar Land, Texas. In Aug. 2023, Ramji delivered a TEDx Talk, “Storytelling from Space” in Sugar Land, Texas, where she emphasized the power of narrative to inspire and unite humanity in the quest to explore the universe. Drawing from her NASA experience, she illustrated how communication bridges the gap between complex science and public engagement.
She credits her mentors and colleagues for supporting her growth. “I have great mentors and people I can lean on if I need help,” she said. “It’s something I didn’t realize I had until I came to NASA.”
Ramji believes stepping outside your comfort zone is essential. “Discomfort brings new learning, understanding, and opportunities, so I like being uncomfortable at times,” she said. “I’m open and receptive to feedback. Constructive criticism has helped me grow and evolve—and better understand NASA’s mission.”
For her, balance means creating intentional space for reflection, growth, and meaningful connection.
Nilufar Ramji gives remarks during Johnson’s building naming ceremony of the “Dorothy Vaughan Center in Honor of the Women of Apollo” on July 19, 2024. NASA/Robert Markowitz Before joining NASA, Ramji had already built an international career rooted in service. She worked at the Aga Khan Foundation in Canada, a nonprofit organization focused on addressing challenges in underdeveloped communities through education and healthcare.
She led visitor programs, workshops and more than 250 events—often for diplomats and global leaders—to promote “quiet diplomacy” and dialogue.
“Transparency, quality, fairness and diversity of perspective are all important to me,” she said. “People come from different experiences that broaden our understanding.”
Ramji later moved to East Africa as the foundation’s sole communications representative across Kenya, Tanzania, and Uganda. There, she trained more than 300 staff and built a communications strategy to help local teams share stories of impact—both successes and challenges—with honesty and empathy.
Her work left a lasting mark on the communities she served and underscored the power of communication to drive positive change.
Nilufar Ramji captures the story of a sesame farmer in Mtwara, Tanzania, whose livelihood improved through a rural development program initiated by the Aga Khan Foundation. In 2013, Ramji moved to the United States and started over, rebuilding her network and career. She worked for the Aga Khan Council for USA in Houston, leading a volunteer recruitment program that connected thousands of people with roles suited to their skills.
She later applied for a contractor position—not knowing it was with NASA. “I never thought my skills or expertise would be valued at a place like NASA,” she said. But in 2018, she accepted a role as a public relations specialist supporting International Space Station outreach. She has been shaping the agency’s storytelling ever since.
Ramji’s journey represents NASA’s commitment to pushing boundaries and expanding humanity’s knowledge of the universe. With collaboration, transparency, and vision, she is helping bring the next frontier of space exploration to life.
Explore More
4 min read Robots, Rovers, and Regolith: NASA Brings Exploration to FIRST Robotics 2025
Article 7 days ago 4 min read NASA Advances Precision Landing Technology with Field Test at Kennedy
Article 7 days ago 3 min read In the Starlight: Jason Phillips’ Unexpected Path to Johnson Procurement
Article 1 week ago View the full article
-
By NASA
Researchers with NASA’s Exploration Research and Technology programs conduct molten regolith electrolysis testing inside Swamp Works at NASA’s Kennedy Space Center in Florida on Thursday, Dec. 5, 2024.NASA/Kim Shiflett As NASA works to establish a long-term presence on the Moon, researchers have reached a breakthrough by extracting oxygen at a commercial scale from simulated lunar soil at Swamp Works at NASA’s Kennedy Space Center in Florida. The achievement moves NASA one step closer to its goal of utilizing resources on the Moon and beyond instead of relying only on supplies shipped from Earth.
NASA Kennedy researchers in the Exploration Research and Technology programs teamed up with Lunar Resources Inc. (LUNAR), a space industrial company in Houston, Texas, to perform molten regolith electrolysis. Researchers used the company’s resource extraction reactor, called LR-1, along with NASA Kennedy’s vacuum chamber. During the recent vacuum chamber testing, molecular oxygen was measured in its pure form along with the production of metals from a batch of dust and rock that simulates lunar soil, often referred to as “regolith,” in the industry.
“This is the first time NASA has produced molecular oxygen using this process,” said Dr. Annie Meier, molten regolith electrolysis project manager at NASA Kennedy. “The process of heating up the reactor is like using an elaborate cooking pot. Once the lid is on, we are essentially watching the gas products come out.”
During testing, the vacuum environment chamber replicated the vacuum pressure of the lunar surface. The extraction reactor heated about 55 pounds (25 kilograms) of simulated regolith up to a temperature of 3100°F (1700°C) until it melted. Researchers then passed an electric current through the molten regolith until oxygen in a gas form was separated from the metals of the soil. They measured and collected the molecular oxygen for further study.
In addition to air for breathing, astronauts could use oxygen from the Moon as a propellant for NASA’s lunar landers and for building essential infrastructure. This practice of in-situ resource utilization (ISRU) also decreases the costs of deep space exploration by reducing the number of resupply missions needed from Earth.
Once the process is perfected on Earth, the reactor and its subsystems can be delivered on future missions to the Moon. Lunar rovers, similar to NASA’s ISRU Pilot Excavator, could autonomously gather the regolith to bring back to the reactor system to separate the metals and oxygen.
“Using this unique chemical process can produce the oxidizer, which is half of the propellant mix, and it can create vital metals used in the production of solar panels that in turn could power entire lunar base stations,” said Evan Bell, mechanical structures and mechatronics lead at NASA Kennedy.
Post-test data analysis will help the NASA and LUNAR teams better understand the thermal and chemical function of full-scale molten regolith electrolysis reactors for the lunar surface. The vacuum chamber and reactor also can be upgraded to represent other locations of the lunar environment as well as conditions on Mars for further testing.
Researchers at NASA Kennedy began developing and testing molten regolith electrolysis reactors in the early 1990s. Swamp Works is a hands-on learning environment facility at NASA Kennedy that takes ideas through development and into application to benefit space exploration and everyone living on Earth. From 2019 to 2023, Swamp Works developed an early concept reactor under vacuum conditions named Gaseous Lunar Oxygen from Regolith Electrolysis (GaLORE). Scientists at NASA’s Johnson Space Center in Houston conducted similar testing in 2023, removing carbon monoxide from simulated lunar regolith in a vacuum chamber.
“We always say that Kennedy Space Center is Earth’s premier spaceport, and this breakthrough in molten regolith electrolysis is just another aspect of us being the pioneers in providing spaceport capabilities on the Moon, Mars, and beyond,” Bell said.
NASA’s Exploration Research and Technology programs, related laboratories, and research facilities develop technologies that will enable human deep space exploration. NASA’s Game Changing Development program, managed by the agency’s Space Technology Mission Directorate funded the project.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.