Jump to content

Recommended Posts

Posted
Return_highlights_Cosmic_Kiss_card_full. Video: 00:01:41

The Crew Dragon capsule carrying ESA astronaut Matthias Maurer and NASA astronauts Raja Chari, Thomas Marshburn and Kayla Barron home from the International Space Station splashed down off the coast of Florida, USA, on Friday 6 May 2022 at 05:43 BST/06:43 CEST.

Its return marks the end of Crew-3’s almost six-month stay in orbit and the end of Matthias’s first mission, known as Cosmic Kiss.

Crew-3 undocked from the International Space Station in Crew Dragon spacecraft Endurance at 06:20 BST/07:20 CEST Thursday 5 May. When a Crew capsule splashes down, it is met by nearby ships with experts ready to bring it on board, open the hatch, and welcome the astronauts home.

After initial medical checks, the crew is transported by helicopter to shore. Now that his mission has come to an end, Matthias will return to ESA’s European Astronaut Centre in Cologne, Germany, where he will participate in post-flight debriefings, provide samples for scientific evaluation and readapt to Earth’s gravity with the support of ESA experts.

More info on Cosmic Kiss here.

Access the related broadcast quality video material.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read New Visualization From NASA’s Webb Telescope Explores Cosmic Cliffs
      The landscape of “mountains” and “valleys” known as the Cosmic Cliffs is actually a portion of the nebula Gum 31, which contains a young star cluster called NGC 3324. Both Gum 31 and NGC 3324 are part of a vast star-forming region known as the Carina Nebula Complex. Credits:
      NASA, ESA, CSA, STScI. In July 2022, NASA’s James Webb Space Telescope made its public debut with a series of breathtaking images. Among them was an ethereal landscape nicknamed the Cosmic Cliffs. This glittering realm of star birth is the subject of a new 3D visualization derived from the Webb data. The visualization, created by NASA’s Universe of Learning and titled “Exploring the Cosmic Cliffs in 3D,” breathes new life into an iconic Webb image.
      It is being presented today at a special event hosted by the International Planetarium Society to commemorate the 100th anniversary of the first public planetarium in Munich, Germany.
      The landscape of “mountains” and “valleys” known as the Cosmic Cliffs is actually a portion of the nebula Gum 31, which contains a young star cluster called NGC 3324. Both Gum 31 and NGC 3324 are part of a vast star-forming region known as the Carina Nebula Complex.
      Ultraviolet light and stellar winds from the stars of NGC 3324 have carved a cavernous area within Gum 31. A portion of this giant bubble is seen above the Cosmic Cliffs. (The star cluster itself is outside this field of view.)
      The Cliffs display a misty appearance, with “steam” that seems to rise from the celestial mountains. In actuality, the wisps are hot, ionized gas and dust streaming away from the nebula under an onslaught of relentless ultraviolet radiation.
      Eagle-eyed viewers may also spot particularly bright, yellow streaks and arcs that represent outflows from young, still-forming stars embedded within the Cosmic Cliffs. The latter part of the visualization sequence swoops past a prominent protostellar jet in the upper right of the image.
      Video: Exploring the Cosmic Cliffs in 3D
      In July 2022, NASA’s James Webb Space Telescope made history, revealing a breathtaking view of a region now nicknamed the Cosmic Cliffs. This glittering landscape, captured in incredible detail, is part of the nebula Gum 31 — a small piece of the vast Carina Nebula Complex — where stars are born amid clouds of gas and dust.
      This visualization brings Webb’s iconic image to life — helping us imagine the true, three-dimensional structure of the universe… and our place within it.
      Produced for NASA by the Space Telescope Science Institute (STScI) with partners at Caltech/IPAC, and developed by the AstroViz Project of NASA’s Universe of Learning, this visualization is part of a longer, narrated video that provides broad audiences, including youth, families, and lifelong learners, with a direct connection to the science and scientists of NASA’s Astrophysics missions. That video enables viewers to explore fundamental questions in science, experience how science is done, and discover the universe for themselves.
      “Bringing this amazing Webb image to life helps the public to comprehend the three-dimensional structure inherent in the 2D image, and to develop a better mental model of the universe,” said STScI’s Frank Summers, principal visualization scientist and leader of the AstroViz Project.
      More visualizations and connections between the science of nebulas and learners can be explored through other products produced by NASA’s Universe of Learning including a Carina Nebula Complex resource page and ViewSpace, a video exhibit that is currently running at almost 200 museums and planetariums across the United States. Visitors can go beyond video to explore the images produced by space telescopes with interactive tools now available for museums and planetariums.
      NASA’s Universe of Learning materials are based upon work supported by NASA under award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and NASA’s Jet Propulsion Laboratory.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      NASA’s Universe of Learning is part of the NASA Science Activation program, from the Science Mission Directorate at NASA Headquarters. The Science Activation program connects NASA science experts, real content and experiences, and community leaders in a way that activates minds and promotes deeper understanding of our world and beyond. Using its direct connection to the science and the experts behind the science, NASA’s Universe of Learning provides resources and experiences that enable youth, families, and lifelong learners to explore fundamental questions in science, experience how science is done, and discover the universe for themselves.
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Explore more: Carina Nebula Complex from NASA’s Universe of Learning
      Read more: Webb’s view of the Cosmic Cliffs
      Listen: Carina Nebula sonification
      Read more: Webb’s star formation discoveries
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated May 07, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Nebulae Science & Research Star-forming Nebulae Stars The Universe View the full article
    • By NASA
      5 min read
      NASA’s NICER Maps Debris From Recurring Cosmic Crashes
      Lee esta nota de prensa en español aquí.
      For the first time, astronomers have probed the physical environment of repeating X-ray outbursts near monster black holes thanks to data from NASA’s NICER (Neutron star Interior Composition Explorer) and other missions.
      Scientists have only recently encountered this class of X-ray flares, called QPEs, or quasi-periodic eruptions. A system astronomers have nicknamed Ansky is the eighth QPE source discovered, and it produces the most energetic outbursts seen to date. Ansky also sets records in terms of timing and duration, with eruptions every 4.5 days or so that last approximately 1.5 days.
      “These QPEs are mysterious and intensely interesting phenomena,” said Joheen Chakraborty, a graduate student at the Massachusetts Institute of Technology in Cambridge. “One of the most intriguing aspects is their quasi-periodic nature. We’re still developing the methodologies and frameworks we need to understand what causes QPEs, and Ansky’s unusual properties are helping us improve those tools.”
      Watch how astronomers used data from NASA’s NICER (Neutron star Interior Composition Explorer) to study a mysterious cosmic phenomenon called a quasi-periodic eruption, or QPE.
      NASA’s Goddard Space Flight Center Ansky’s name comes from ZTF19acnskyy, the moniker of a visible-light outburst seen in 2019. It was located in a galaxy about 300 million light-years away in the constellation Virgo. This event was the first indication that something unusual might be happening.
      A paper about Ansky, led by Chakraborty, was published Tuesday in The Astrophysical Journal.
      A leading theory suggests that QPEs occur in systems where a relatively low-mass object passes through the disk of gas surrounding a supermassive black hole that holds hundreds of thousands to billions of times the Sun’s mass.
      When the lower-mass object punches through the disk, its passage drives out expanding clouds of hot gas that we observe as QPEs in X-rays.
      Scientists think the eruptions’ quasi-periodicity occurs because the smaller object’s orbit is not perfectly circular and spirals toward the black hole over time. Also, the extreme gravity close to the black hole warps the fabric of space-time, altering the object’s orbits so they don’t close on themselves with each cycle. Scientists’ current understanding suggests the eruptions repeat until the disk disappears or the orbiting object disintegrates, which may take up to a few years.
      A system astronomers call Ansky, in the galaxy at the center of this image, is home to a recently discovered series of quasi-periodic eruptions. Sloan Digital Sky Survey “Ansky’s extreme properties may be due to the nature of the disk around its supermassive black hole,” said Lorena Hernández-García, an astrophysicist at the Millennium Nucleus on Transversal Research and Technology to Explore Supermassive Black Holes, the Millennium Institute of Astrophysics, and University of Valparaíso in Chile. “In most QPE systems the supermassive black hole likely shreds a passing star, creating a small disk very close to itself. In Ansky’s case, we think the disk is much larger and can involve objects farther away, creating the longer timescales we observe.”
      Hernández-García, in addition to being a co-author on Chakraborty’s paper, led the study that discovered Ansky’s QPEs, which was published in April in Nature Astronomy and used data from NICER, NASA’s Neil Gehrels Swift Observatory and Chandra X-ray Observatory, as well as ESA’s (European Space Agency’s) XMM-Newton space telescope.
      NICER’s position on the International Space Station allowed it to observe Ansky about 16 times every day from May to July 2024. The frequency of the observations was critical in detecting the X-ray fluctuations that revealed Ansky produces QPEs.
      Chakraborty’s team used data from NICER and XMM-Newton to map the rapid evolution of the ejected material driving the observed QPEs in unprecedented detail by studying variations in X-ray intensity during the rise and fall of each eruption.
      The researchers found that each impact resulted in about a Jupiter’s worth of mass reaching expansion velocities around 15% of the speed of light.
      The NICER (Neutron star Interior Composition Explorer) X-ray telescope is reflected on NASA astronaut and Expedition 72 flight engineer Nick Hague’s spacesuit helmet visor in this high-flying “space-selfie” taken during a spacewalk on Jan. 16, 2025. NASA/Nick Hague The NICER telescope’s ability to frequently observe Ansky from the space station and its unique measurement capabilities also made it possible for the team to measure the size and temperature of the roughly spherical bubble of debris as it expanded.
      “All NICER’s Ansky observations used in these papers were collected after the instrument experienced a ‘light leak’ in May 2023,” said Zaven Arzoumanian, the mission’s science lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Even though the leak – which was patched in January – affected the telescope’s observing strategy, NICER was still able to make vital contributions to time domain astronomy, or the study of changes in the cosmos on timescales we can see.”
      After the repair, NICER continued observing Ansky to explore how the outbursts have evolved over time. A paper about these results, led by Hernández-García and co-authored by Chakraborty, is under review.
      Observational studies of QPEs like Chakraborty’s will also play a key role in preparing the science community for a new era of multimessenger astronomy, which combines measurements using light, elementary particles, and space-time ripples called gravitational waves to better understand objects and events in the universe.
      One goal of ESA’s future LISA (Laser Interferometer Space Antenna) mission, in which NASA is a partner, is to study extreme mass-ratio inspirals — or systems where a low-mass object orbits a much more massive one, like Ansky. These systems should emit gravitational waves that are not observable with current facilities. Electromagnetic studies of QPEs will help improve models of those systems ahead of LISA’s anticipated launch in the mid-2030s.
      “We’re going to keep observing Ansky for as long as we can,” Chakraborty said. “We’re still in the infancy of understanding QPEs. It’s such an exciting time because there’s so much to learn.”

      Download images and videos through NASA’s Scientific Visualization Studio.

      By Jeanette Kazmierczak
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share








      Details
      Last Updated May 06, 2025 Editor Jeanette Kazmierczak Location Goddard Space Flight Center Related Terms
      The Universe Astrophysics Black Holes Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research International Space Station (ISS) ISS Research NICER (Neutron star Interior Composition Explorer) Science & Research Supermassive Black Holes X-ray Astronomy View the full article
    • By NASA
      4 Min Read NASA Expands SPHEREx Science Return Through Commercial Partnership
      A sectional rendering of NASA's SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer). Credits: NASA NASA is partnering with commercial industry to expand our knowledge of Earth, our solar system, and beyond. Recently, NASA collaborated with Kongsberg Satellite Services (KSAT) to support data transfer for the agency’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) mission to explore the origins of the universe. 
      “Not only is NASA moving toward commercialization, the agency is making technological advancements to existing systems and saving millions of dollars in the process — all while expanding human knowledge through science and exploration missions,” said Kevin Coggins, associate administrator for NASA’s SCaN (Space Communications and Navigation) program.
      To receive data from missions in space, NASA relies on the Near Space Network and Deep Space Network, a collection of antennas around the globe.
      In preparation for the recently-launched SPHEREx observatory, NASA needed to upgrade an antenna on the world’s most remote continent: Antarctica.
      Transmitted via NASA’s Near Space Network, this video shows SPHEREx scanning a region of the Large Magellanic Cloud. The shifting colors represent different infrared wavelengths detected by the telescope’s two arrays. Credit: NASA/JPL-Caltech NASA’s SCaN program took a novel approach by leveraging its established commercial partnership with KSAT. While upgraded KSAT antennas were added to the Near Space Network in 2023, SPHEREx required an additional Antarctic antenna that could link to online data storage.
      To support SPHEREx’s polar orbit, KSAT upgraded its Troll, Antarctica antenna and incorporated their own cloud storage system. NASA then connected KSAT’s cloud to the NASA cloud, DAPHNE+ (Data Acquisition Process and Handling Environment).
      As the Near Space Network’s operational cloud services system, DAPHNE+ enables science missions to transmit their data to the network for virtual file storage, processing, and management. 
      “By connecting the Troll antenna to DAPHNE+, we eliminated the need for large, undersea fiberoptic cables by virtually connecting private and government-owned cloud systems, reducing the project’s cost and complexity,” said Matt Vincent, the SPHEREx mission manager for the Near Space Network at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      Each day, SPHEREx downlinks a portion of its 20 gigabits of science data through the Troll antenna, which transfers the files across KSAT’s network of relay satellites to the DAPHNE+ cloud. The cloud system combines and centralizes the data from each antenna, allowing access to all of SPHEREx’s health and science data in one convenient place. 
      The SPHEREx mission data is transmitted from space to the Troll Satellite Station, relayed through a network of satellites, and stored in the Near Space Network’s cloud system for easily-accessible analysis by scientists around the world.NASA/Dave Ryan With coverage throughout its orbit, SPHEREx transmits its 3D maps of the celestial sky, offering new insight into what happened a fraction of a second after the big bang. 
      “Missions like SPHEREx use the Near Space Network’s combination of commercial and government antennas,” explained Michael Skube, DAPHNE+ manager at NASA Goddard. “And that is the benefit of DAPHNE+ — it enables the network to pull different sources of information into one central location. The DAPHNE+ system treats government and commercial antennas as part of the same network.” 
      The partnership is mutually beneficial. NASA’s Near Space Network maintains a data connection with SPHEREx as it traverses both poles and KSAT benefits from its antennas’ integration into a robust global network – no new cables required. 
       “We were able to find a networking solution with KSAT that did not require us to put additional hardware in Antarctica,” said Vincent. “Now we are operating with the highest data rate we have ever downlinked from that location.” 
      The upgraded ground station antenna at Troll Satellite Station supports cloud-based space communications, enabling NASA’s Near Space Network to support scientific missions via a wireless cloud network.Kongsberg Satellite Services For NASA, its commercial partners, and other global space agencies, this expansion means more reliable space communications with fewer expenses. 
      Troll’s successful integration into the Near Space Network is a case study for future private and government partnerships. As SPHEREx measures the collective glow of over 450 million galaxies as far as 10 billion light-years away, SCaN continues to innovate how its discoveries safely return to Earth. 
      The SPHEREx mission is managed by NASA’s Jet Propulsion Laboratory in Southern California for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. Data will be processed and archived at IPAC at Caltech. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Funding and oversight for DAPHNE+ and the Near Space Network come from the SCaN program office at NASA Headquarters and operate out of NASA’s Goddard Space Flight Center. The Troll Satellite Station is owned and operated by Kongsberg Satellite Services and located in Queen Maud Land, Antarctica. 
      About the Author
      Korine Powers
      Lead Writer and Communications StrategistKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, exploration activities, and more.
      Share
      Details
      Last Updated May 06, 2025 Related Terms
      Communicating and Navigating with Missions Commercial Space Space Communications & Navigation Program SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) View the full article
    • By European Space Agency
      Video: 00:00:00 ESA’s state-of-the-art Biomass satellite launched aboard a Vega-C rocket from Europe’s Spaceport in Kourou, French Guiana. The rocket lifted off on 29 April 2025 at 11:15 CEST (06:15 local time).
      In orbit, this latest Earth Explorer mission will provide vital insights into the health and dynamics of the world’s forests, revealing how they are changing over time and, critically, enhancing our understanding of their role in the global carbon cycle. It is the first satellite to carry a fully polarimetric P-band synthetic aperture radar for interferometric imaging. Thanks to the long wavelength of P-band, around 70 cm, the radar signal can slice through the whole forest layer to measure the ‘biomass’, meaning the woody trunks, branches and stems, which is where trees store most of their carbon.
      Vega-C is the evolution of the Vega family of rockets and delivers increased performance, greater payload volume and improved competitiveness.
      View the full article
    • By NASA
      ESA/Hubble & NASA, K. Noll This newly reprocessed image released on April 18, 2025, provides a new view of an enormous, 9.5-light-year-tall pillar of cold gas and dust. Despite its size, it’s just one small piece of the greater Eagle Nebula, also called Messier 16.
      The Eagle Nebula is one of many nebulae in the Milky Way that are known for their sculpted, dusty clouds. Nebulae take on these fantastic shapes when exposed to powerful radiation and winds from infant stars. Regions with denser gas are more able to withstand the onslaught of radiation and stellar winds from young stars, and these dense areas remain as dusty sculptures like the starry pillar shown here.
      Download this image.
      Image credit: ESA/Hubble & NASA, K. Noll
      View the full article
  • Check out these Videos

×
×
  • Create New...