Jump to content

Return highlights | Cosmic Kiss


Recommended Posts

Return_highlights_Cosmic_Kiss_card_full. Video: 00:01:41

The Crew Dragon capsule carrying ESA astronaut Matthias Maurer and NASA astronauts Raja Chari, Thomas Marshburn and Kayla Barron home from the International Space Station splashed down off the coast of Florida, USA, on Friday 6 May 2022 at 05:43 BST/06:43 CEST.

Its return marks the end of Crew-3’s almost six-month stay in orbit and the end of Matthias’s first mission, known as Cosmic Kiss.

Crew-3 undocked from the International Space Station in Crew Dragon spacecraft Endurance at 06:20 BST/07:20 CEST Thursday 5 May. When a Crew capsule splashes down, it is met by nearby ships with experts ready to bring it on board, open the hatch, and welcome the astronauts home.

After initial medical checks, the crew is transported by helicopter to shore. Now that his mission has come to an end, Matthias will return to ESA’s European Astronaut Centre in Cologne, Germany, where he will participate in post-flight debriefings, provide samples for scientific evaluation and readapt to Earth’s gravity with the support of ESA experts.

More info on Cosmic Kiss here.

Access the related broadcast quality video material.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA astronaut Loral O’Hara is returning home after six months aboard the International Space Station. During her time on the orbiting laboratory, O’Hara contributed to dozens of scientific investigations and technology demonstrations to prepare for future space exploration missions and generate innovations and benefits for humanity on Earth.
      Here is a look at some of the scientific activities O’Hara conducted during her mission:
      Biking for Better Health
      NASA NASA astronaut Loral O’Hara is among the first astronauts participating in the CIPHER (Complement of Integrated Protocols for Human Exploration Research on Varying Mission Durations) investigation. CIPHER examines physiological and psychological changes that humans undergo during spaceflight. One of the protocols measures changes in cardiorespiratory and muscle fitness during exercise. Collecting data from crew members on missions of different durations supports development of ways to protect crew member health on a long mission such as a trip to Mars.
      Tending the Space Garden
      NASA NASA astronaut Loral O’Hara works with tomato plants grown for Plant Habitat-06, an investigation using genetic analysis to examine how spaceflight affects plant immune function and production. Results could support development of crops to provide food and other services on future space missions. On Earth, pathogens are responsible for up to 40% of global crop loss, and insight into the interaction between gravity and how plants respond to pathogens could inform strategies to enhance crop growth and productivity.
      Reading Radiation Exposure
      NASA Crew members pose with active dosimeters: left to right, Andreas Mogensen of ESA (European Space Agency), NASA astronauts Loral O’Hara and Jasmin Moghbeli, and Satoshi Furukawa of JAXA (Japan Aerospace Exploration Agency). These devices monitor individual radiation exposure for the International Space Station Internal Radiation Monitoring investigation, which aims to keep ionizing radiation exposure at levels acceptable for maintaining crew member health and safety and ensuring the success of their missions.
      Understanding Bone Loss
      NASA Bone loss is a major problem of aging on Earth and a serious health concern for astronauts. MABL-A (Microgravity Associated Bone Loss-A) examines the effect of microgravity on bone marrow mesenchymal stem cells, which produce bone-forming cells and play a role in making and repairing skeletal tissues. NASA astronaut Loral O’Hara works inside the Life Science Glovebox for the investigation, which could improve understanding of the mechanisms behind bone loss and support development of ways to better protect crew members and people on Earth from its effects.
      Bringing in the Cold
      NASA NASA astronauts Jasmin Moghbeli and Loral O’Hara pose in front of the Cold Atom Lab. The lab produces clouds of atoms so cold that they have almost no motion, allowing researchers to observe their fundamental behaviors and quantum characteristics. Physicists have long pursued ever colder temperatures, and microgravity may make it possible to achieve those temperatures for longer periods of time. The Cold Atom Lab research could facilitate the development of new quantum technology.
      Taking Out the Heat
      NASA NASA astronaut Loral O’Hara works on MaRVIn-PCIM (Microgravity Research for Versatile Investigations-Phase Change in Mixtures), which examines the dynamics of liquid and vapor flow inside a wickless heat pipe. These devices, used to dissipate heat to cool satellites and electronics, operate differently in microgravity than on Earth. Results could support development of lighter and more efficient cooling devices for future space exploration.
      Preparing for a Walk in Space
      NASA NASA astronaut Loral O’Hara tests components of her spacesuit in preparation for a spacewalk. O’Hara and NASA astronaut Jasmin Moghbeli conducted a spacewalk together on Nov 1, 2023. It took the duo six hours and 42 minutes to complete tasks that included working on hardware that enables the space station’s solar arrays to track the Sun, helping to provide power for scientific operations on the orbiting lab.
      Creating Cardiac Tissues
      NASA NASA astronaut Loral O’Hara works on the Redwire Cardiac Bioprinting Investigation (BFF Cardiac), which studies bio-printed cardiac tissues. Higher-quality 3D tissues can be printed in microgravity, where density layers, settling, and other effects of gravity are absent. This technology supports development of ways to print food and medicine on demand on future missions, reducing mass and cost at launch and improving crew health and safety. Results also could advance technologies to create replacement organs and tissues for transplant on Earth, helping to alleviate shortages.
      Melissa Gaskill
      International Space Station Research Communications Team
      Johnson Space Center
      Search this database of scientific experiments to learn more about those mentioned above.
      Download full-resolution versions of all photos in this article.
      Keep Exploring Discover More Topics
      Latest News from Space Station Research
      ISS National Laboratory
      Station Science 101
      Opportunities and Information for Researchers
      View the full article
    • By NASA
      3 min read
      Hubble Sees New Star Proclaiming Presence with Cosmic Lightshow
      This new image from NASA’s Hubble Space Telescope features the FS Tau star system. NASA, ESA, and K. Stapelfeldt (NASA JPL); Image Processing: Gladys Kober (NASA/Catholic University of America) Jets emerge from the cocoon of a newly forming star to blast across space, slicing through the gas and dust of a shining nebula in this new image from NASA’s Hubble Space Telescope.
      FS Tau is a multi-star system made up of FS Tau A, the bright star-like object near the middle of the image, and FS Tau B (Haro 6-5B), the bright object to the far right obscured by a dark, vertical lane of dust. The young objects are surrounded by gently illuminated gas and dust of this stellar nursery. The system is only about 2.8 million years old, very young for a star system. Our Sun, by contrast, is about 4.6 billion years old.
      FS Tau B is a newly forming star, or protostar, surrounded by a protoplanetary disk, a pancake-shaped collection of dust and gas leftover from the formation of the star that will eventually coalesce into planets. The thick dust lane, seen nearly edge-on, separates what are thought to be the illuminated surfaces of the flared disk.
      FS Tau B is likely in the process of becoming a T Tauri star, a type of young variable star that hasn’t begun nuclear fusion yet but is beginning to evolve into a hydrogen-fueled star similar to our Sun. Protostars shine with the heat energy released as the gas clouds from which they are forming collapse, and from the accretion of material from nearby gas and dust. Variable stars are a class of star whose brightness changes noticeably over time.
      FS Tau A is itself a T Tauri binary system, consisting of two stars orbiting each other.
      Protostars are known to eject fast-moving, column-like streams of energized material called jets, and FS Tau B provides a striking example of this phenomenon. The protostar is the source of an unusual asymmetric, double-sided jet, visible here in blue. Its asymmetrical structure may result from the difference in the rates at which mass is being expelled from the object.
      FS Tau B is also classified as a Herbig-Haro object. Herbig–Haro objects form when jets of ionized gas ejected by a young star collide with nearby clouds of gas and dust at high speeds, creating bright patches of nebulosity.
      FS Tau is part of the Taurus-Auriga region, a collection of dark molecular clouds that are home to numerous newly forming and young stars, roughly 450 light-years away in the constellations of Taurus and Auriga. Hubble has previously observed this region, whose star-forming activity makes it a compelling target for astronomers. Hubble took these observations as part of an investigation of edge-on dust disks around young stellar objects.

      Download this image

      Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Mar 25, 2024 Editor Andrea Gianopoulos Location Goddard Space Flight Center Related Terms
      Goddard Space Flight Center Hubble Space Telescope Missions Nebulae Protostars Stars The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Galaxies Stories



      Stars Stories



      NASA Astrophysics


      View the full article
    • By NASA
      4 min read
      NASA’s Tiny BurstCube Mission Launches to Study Cosmic Blasts
      BurstCube, shown in this artist’s concept, will orbit Earth as it hunts for short gamma-ray bursts. NASA’s Goddard Space Flight Center Conceptual Image Lab NASA’s BurstCube, a shoebox-sized satellite designed to study the universe’s most powerful explosions, is on its way to the International Space Station.
      The spacecraft travels aboard SpaceX’s 30th Commercial Resupply Services mission, which lifted off at 4:55 p.m. EDT on Thursday, March 21, from Launch Complex 40 at Cape Canaveral Space Force Station in Florida. After arriving at the station, BurstCube will be unpacked and later released into orbit, where it will detect, locate, and study short gamma-ray bursts – brief flashes of high-energy light.
      “BurstCube may be small, but in addition to investigating these extreme events, it’s testing new technology and providing important experience for early career astronomers and aerospace engineers,” said Jeremy Perkins, BurstCube’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The BurstCube satellite sits in its flight configuration in this photo taken in the Goddard CubeSat Lab in 2023. NASA/Sophia Roberts
      Download high-resolution images and videos of BurstCube.

      Short gamma-ray bursts usually occur after the collisions of neutron stars, the superdense remnants of massive stars that exploded in supernovae. The neutron stars can also emit gravitational waves, ripples in the fabric of space-time, as they spiral together.
      Astronomers are interested in studying gamma-ray bursts using both light and gravitational waves because each can teach them about different aspects of the event. This approach is part of a new way of understanding the cosmos called multimessenger astronomy.
      The collisions that create short gamma-ray bursts also produce heavy elements like gold and iodine, an essential ingredient for life as we know it.
      Currently, the only joint observation of gravitational waves and light from the same event – called GW170817 – was in 2017. It was a watershed moment in multimessenger astronomy, and the scientific community has been hoping and preparing for additional concurrent discoveries since.
      “BurstCube’s detectors are angled to allow us to detect and localize events over a wide area of the sky,” said Israel Martinez, research scientist and BurstCube team member at the University of Maryland, College Park and Goddard. “Our current gamma-ray missions can only see about 70% of the sky at any moment because Earth blocks their view. Increasing our coverage with satellites like BurstCube improves the odds we’ll catch more bursts coincident with gravitational wave detections.”
      BurstCube’s main instrument detects gamma rays with energies ranging from 50,000 to 1 million electron volts. (For comparison, visible light ranges between 2 and 3 electron volts.)
      When a gamma ray enters one of BurstCube’s four detectors, it encounters a cesium iodide layer called a scintillator, which converts it into visible light. The light then enters another layer, an array of 116 silicon photomultipliers, that converts it into a pulse of electrons, which is what BurstCube measures. For each gamma ray, the team sees one pulse in the instrument readout that provides the precise arrival time and energy. The angled detectors inform the team of the general direction of the event.
      BurstCube belongs to a class of spacecraft called CubeSats. These small satellites come in a range of standard sizes based on a cube measuring 10 centimeters (3.9 inches) across. CubeSats provide cost-effective access to space to facilitate groundbreaking science, test new technologies, and help educate the next generation of scientists and engineers in mission development, construction, and testing.
      Engineers attach BurstCube to the platform of a thermal vacuum chamber at Goddard ahead of testing. NASA/Sophia Roberts “We were able to order many of BurstCube’s parts, like solar panels and other off-the-shelf components, which are becoming standardized for CubeSats,” said Julie Cox, a BurstCube mechanical engineer at Goddard. “That allowed us to focus on the mission’s novel aspects, like the made-in-house components and the instrument, which will demonstrate how a new generation of miniaturized gamma-ray detectors work in space.”
      BurstCube is led by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. It’s funded by the Science Mission Directorate’s Astrophysics Division at NASA Headquarters. The BurstCube collaboration includes: the University of Alabama in Huntsville; the University of Maryland, College Park; the University of the Virgin Islands; the Universities Space Research Association in Washington; the Naval Research Laboratory in Washington; and NASA’s Marshall Space Flight Center in Huntsville.
      By Jeanette Kazmierczak
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      (301) 286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Mar 21, 2024 Related Terms
      Astrophysics BurstCube CubeSats Gamma Rays Gamma-Ray Bursts Gravitational Waves International Space Station (ISS) Neutron Stars Sensing the Universe & Multimessenger Astronomy The Universe Explore More
      4 min read NASA’s Hubble Finds that Aging Brown Dwarfs Grow Lonely


      Article


      8 hours ago
      2 min read Hubble Views a Galaxy Under Pressure


      Article


      6 days ago
      3 min read Hubble Tracks Jupiter’s Stormy Weather


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      The four crew members of NASA’s SpaceX Crew-7 mission are seated inside the SpaceX Dragon spacecraft after landing in the Gulf of Mexico on March 12, 2024.Credits: NASA/Joel Kowsky After spending 199 days in space, NASA’s SpaceX Crew-7 crew members will discuss their science mission aboard the International Space Station during a news conference at 2:30 p.m. EDT Monday, March 25, at the agency’s Johnson Space Center in Houston.
      NASA astronaut Jasmin Moghbeli, ESA (European Space Agency) astronaut Andreas Mogensen, JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa, and Roscosmos cosmonaut Konstantin Borisov returned to Earth aboard a SpaceX Dragon spacecraft, splashing down at 5:47 a.m., March 12, off the coast of Pensacola, Florida, before flying back to Houston. Crew will answer media questions about their mission aboard the space station and their return to Earth.
      Event coverage will stream live on NASA+, NASA Television, and the agency’s website. Learn how to stream NASA TV through a variety of platforms including social media.
      Media are invited to attend in-person or virtually. Media must RSVP to the Johnson newsroom no later than 12:30 p.m. March 25 at jsccommu@mail.nasa.gov or 281-483-5111. Media should dial-in to the news conference by 2 p.m. the day of the event to ask a question. Questions also may be submitted on social media using #AskNASA. A copy of NASA’s media accreditation policy is online.
      The crew spent six-and-a-half months in space, with 197 days total aboard the space station. During the mission, Moghbeli completed a spacewalk, a first in her career, alongside NASA astronaut Loral O’Hara. It was the first spaceflight for Moghbeli and Borisov, and the second for Furukawa and Mogensen.
      The crew lived and worked aboard the station since Aug. 26, 2023. During the mission, crew contributed to hundreds of experiments and technology demonstrations, including studying plant immune function in microgravity, testing materials in the space environment, and observing thunderstorms to understand the effects of lightning and electrical activity on Earth’s climate and atmosphere. These experiments are helping to prepare for exploration beyond low Earth orbit and to benefit life on Earth.
      They spent five days with the newly arrived crew of NASA’s SpaceX Crew-8 mission, who docked to the station on March 5, and conducted a direct handover introducing three first-time flyers to the space station, discussing ongoing tasks and system statuses.
      Get the latest NASA space station news, images and features on Instagram, Facebook, and X.
      Learn more about NASA’s Commercial Crew Program:
      https://www.nasa.gov/commercialcrew
      -end-
      Josh Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      chelsey.n.ballarte@nasa.gov
      Share
      Details
      Last Updated Mar 20, 2024 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Astronauts Humans in Space ISS Research Jasmin Moghbeli Johnson Space Center View the full article
    • By European Space Agency
      Video: 00:03:01 After more than 6 months on the International Space Station, ESA astronaut Andreas Mogensen returned to Earth, marking the end of his Huginn mission. It was his second mission to the Space Station and his first long-duration, where he was the pilot of Crew-7, which consisted of Jasmin Moghbeli (NASA), Satoshi Furukawa (JAXA), and Konstantin Borisov (Roscosmos).
      View the full article
  • Check out these Videos

×
×
  • Create New...