Jump to content

Crew-3 splashdown | Cosmic Kiss


Recommended Posts

Crew-3_splashdown_Cosmic_Kiss_card_full. Video: 00:02:28

The Crew Dragon capsule carrying ESA astronaut Matthias Maurer and NASA astronauts Raja Chari, Thomas Marshburn and Kayla Barron home from the International Space Station splashed down off the coast of Florida, USA, on Friday 6 May 2022 at 05:43 BST/06:43 CEST.

Its return marks the end of Crew-3’s almost six-month stay in orbit and the end of Matthias’s first mission, known as Cosmic Kiss.

Crew-3 undocked from the International Space Station in Crew Dragon spacecraft Endurance at 06:20 BST/07:20 CEST Thursday 5 May.

When a Crew capsule splashes down, it is met by nearby ships with experts ready to bring it on board, open the hatch, and welcome the astronauts home. After initial medical checks, the crew is transported by helicopter to shore.

Now that his mission has come to an end, Matthias will return to ESA’s European Astronaut Centre in Cologne, Germany, where he will participate in post-flight debriefings, provide samples for scientific evaluation and readapt to Earth’s gravity with the support of ESA experts.

More info on Cosmic Kiss here.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      ESA/Hubble & NASA, F. Niederhofe This NASA/ESA Hubble Space Telescope image features the globular cluster NGC 2005. It’s not an unusual globular cluster in and of itself, but it is a peculiarity when compared to its surroundings. NGC 2005 is located about 750 light-years from the heart of the Large Magellanic Cloud (LMC), which is the Milky Way’s largest satellite galaxy some 162,000 light-years from Earth. Globular clusters are densely-packed groups of stars that can hold tens of thousands or millions of stars. Their density means they are tightly bound by gravity and therefore very stable. This stability contributes to their longevity: globular clusters can be billions of years old, and are often comprised of very old stars. Studying globular clusters in space can be a little like studying fossils on Earth: where fossils give insights into the characteristics of ancient plants and animals, globular clusters illuminate the characteristics of ancient stars.
      Current theories of galaxy evolution predict that galaxies merge with one another. Astronomers think the relatively large galaxies we observe in the modern universe formed when smaller galaxies merged. If this is correct, then we would expect to see evidence that the most ancient stars in nearby galaxies originated in different galactic environments. Because globular clusters hold ancient stars, and because of their stability, they are an excellent laboratory to test this hypothesis.
      NGC 2005 is such a globular cluster, and its very existence provides evidence that supports the theory of galaxy evolution via mergers. Indeed, what makes NGC 2005 a bit peculiar from its surroundings, is the fact that its stars have a chemical composition that is distinct from the stars around it in the LMC. This suggests that the LMC underwent a merger with another galaxy somewhere in its history. That other galaxy has long-since merged and otherwise dispersed, but NGC 2005 remains behind as an ancient witness to the long-past merger.
      Text Credit: European Space Agency (ESA)

      View the full article
    • By NASA
      2 min read
      Hubble Observes a Cosmic Fossil
      This NASA/ESA Hubble Space Telescope image features the globular cluster NGC 2005. ESA/Hubble & NASA, F. Niederhofer, L. Girardi This NASA/ESA Hubble Space Telescope image features the globular cluster NGC 2005. It’s not an unusual globular cluster in and of itself, but it is a peculiarity when compared to its surroundings. NGC 2005 is located about 750 light-years from the heart of the Large Magellanic Cloud (LMC), which is the Milky Way’s largest satellite galaxy some 162,000 light-years from Earth. Globular clusters are densely-packed groups of stars that can hold tens of thousands or millions of stars. Their density means they are tightly bound by gravity and therefore very stable. This stability contributes to their longevity: globular clusters can be billions of years old, and are often comprised of very old stars. Studying globular clusters in space can be a little like studying fossils on Earth: where fossils give insights into the characteristics of ancient plants and animals, globular clusters illuminate the characteristics of ancient stars.
      Current theories of galaxy evolution predict that galaxies merge with one another. Astronomers think the relatively large galaxies we observe in the modern universe formed when smaller galaxies merged. If this is correct, then we would expect to see evidence that the most ancient stars in nearby galaxies originated in different galactic environments. Because globular clusters hold ancient stars, and because of their stability, they are an excellent laboratory to test this hypothesis.
      NGC 2005 is such a globular cluster, and its very existence provides evidence that supports the theory of galaxy evolution via mergers. Indeed, what makes NGC 2005 a bit peculiar from its surroundings, is the fact that its stars have a chemical composition that is distinct from the stars around it in the LMC. This suggests that the LMC underwent a merger with another galaxy somewhere in its history. That other galaxy has long-since merged and otherwise dispersed, but NGC 2005 remains behind as an ancient witness to the long-past merger.
      Text Credit: European Space Agency (ESA)

      Download this image

      Explore More

      Hubble Space Telescope


      Hubble’s Star Clusters


      Galaxy Details and Mergers


      Tracing the Growth of Galaxies

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Jun 14, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Stars The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Galaxies Stories



      Stars Stories



      Dark Matter & Dark Energy


      View the full article
    • By NASA
      Researchers are diving into a synthetic universe to help us better understand the real one. Using supercomputers at the U.S. DOE’s (Department of Energy’s) Argonne National Laboratory in Illinois, scientists have created nearly 4 million simulated images depicting the cosmos as NASA’s Nancy Grace Roman Space Telescope and the Vera C. Rubin Observatory, jointly funded by NSF (the National Science Foundation) and DOE, in Chile will see it.
      Michael Troxel, an associate professor of physics at Duke University in Durham, North Carolina, led the simulation campaign as part of a broader project called OpenUniverse. The team is now releasing a 10-terabyte subset of this data, with the remaining 390 terabytes to follow this fall once they’ve been processed.
      “Using Argonne’s now-retired Theta machine, we accomplished in about nine days what would have taken around 300 years on your laptop,” said Katrin Heitmann, a cosmologist and deputy director of Argonne’s High Energy Physics division who managed the project’s supercomputer time. “The results will shape Roman and Rubin’s future attempts to illuminate dark matter and dark energy while offering other scientists a preview of the types of things they’ll be able to explore using data from the telescopes.”
      This graphic highlights part of a new simulation of what NASA’s Nancy Grace Roman Space Telescope could see when it launches by May 2027. The background spans about 0.11 square degrees (roughly equivalent to half of the area of sky covered by a full Moon), representing less than half the area Roman will see in a single snapshot. The inset zooms in to a region 300 times smaller, showcasing a swath of brilliant synthetic galaxies at Roman’s full resolution. Having such a realistic simulation helps scientists study the physics behind cosmic images –– both synthetic ones like these and future real ones. Researchers will use the observations for many types of science, including testing our understanding of the origin, evolution, and ultimate fate of the universe.C. Hirata and K. Cao (OSU) and NASA’s Goddard Space Flight Center A Cosmic Dress Rehearsal
      For the first time, this simulation factored in the telescopes’ instrument performance, making it the most accurate preview yet of the cosmos as Roman and Rubin will see it once they start observing. Rubin will begin operations in 2025, and NASA’s Roman will launch by May 2027.
      The simulation’s precision is important because scientists will comb through the observatories’ future data in search of tiny features that will help them unravel the biggest mysteries in cosmology.
      Roman and Rubin will both explore dark energy –– the mysterious force thought to be accelerating the universe’s expansion. Since it plays a major role in governing the cosmos, scientists are eager to learn more about it. Simulations like OpenUniverse help them understand signatures that each instrument imprints on the images and iron out data processing methods now so they can decipher future data correctly. Then scientists will be able to make big discoveries even from weak signals.
      “OpenUniverse lets us calibrate our expectations of what we can discover with these telescopes,” said Jim Chiang, a staff scientist at DOE’s SLAC National Accelerator Laboratory in Menlo Park, California, who helped create the simulations. “It gives us a chance to exercise our processing pipelines, better understand our analysis codes, and accurately interpret the results so we can prepare to use the real data right away once it starts coming in.”
      Then they’ll continue using simulations to explore the physics and instrument effects that could reproduce what the observatories see in the universe.
      This photo displays Argonne Leadership Computing Facility’s now-retired Theta supercomputer. Scientists use supercomputers to simulate experiments they can’t conduct in real life, such as creating new universes from scratch. Argonne National Laboratory Telescopic Teamwork
      It took a large and talented team from several organizations to conduct such an immense simulation.
      “Few people in the world are skilled enough to run these simulations,” said Alina Kiessling, a research scientist at NASA’s Jet Propulsion Laboratory (JPL) in Southern California and the principal investigator of OpenUniverse. “This massive undertaking was only possible thanks to the collaboration between the DOE, Argonne, SLAC, and NASA, which pulled all the right resources and experts together.”
      And the project will ramp up further once Roman and Rubin begin observing the universe.
      “We’ll use the observations to make our simulations even more accurate,” Kiessling said. “This will give us greater insight into the evolution of the universe over time and help us better understand the cosmology that ultimately shaped the universe.”
      The Roman and Rubin simulations cover the same patch of the sky, totaling about 0.08 square degrees (roughly equivalent to a third of the area of sky covered by a full Moon). The full simulation to be released later this year will span 70 square degrees, about the sky area covered by 350 full Moons.
      Overlapping them lets scientists learn how to use the best aspects of each telescope –– Rubin’s broader view and Roman’s sharper, deeper vision. The combination will yield better constraints than researchers could glean from either observatory alone.
      “Connecting the simulations like we’ve done lets us make comparisons and see how Roman’s space-based survey will help improve data from Rubin’s ground-based one,” Heitmann said. “We can explore ways to tease out multiple objects that blend together in Rubin’s images and apply those corrections over its broader coverage.”
      This pair of images showcases the same region of sky as simulated by the Vera C. Rubin Observatory (left, processed by the Legacy Survey of Space and Time Dark Energy Science Collaboration) and NASA’s Nancy Grace Roman Space Telescope (right, processed by the Roman High-Latitude Imaging Survey Project Infrastructure Team). Roman will capture deeper and sharper images from space, while Rubin will observe a broader region of the sky from the ground. Because it has to peer through Earth’s atmosphere, Rubin’s images won’t always be sharp enough to distinguish multiple, close sources as separate objects. They’ll appear to blur together, which limits the science researchers can do using the images. But by comparing Rubin and Roman images of the same patch of sky, scientists can explore how to “deblend” objects and implement the adjustments across Rubin’s broader observations. J. Chiang (SLAC), C. Hirata (OSU), and NASA’s Goddard Space Flight Center Scientists can consider modifying each telescope’s observing plans or data processing pipelines to benefit the combined use of both.
      “We made phenomenal strides in simplifying these pipelines and making them usable,” Kiessling said. A partnership with Caltech/IPAC’s IRSA (Infrared Science Archive) makes simulated data accessible now so when researchers access real data in the future, they’ll already be accustomed to the tools. “Now we want people to start working with the simulations to see what improvements we can make and prepare to use the future data as effectively as possible.”
      OpenUniverse, along with other simulation tools being developed by Roman’s Science Operations and Science Support centers, will prepare scientists for the large datasets expected from Roman. The project brings together dozens of experts from NASA’s JPL, DOE’s Argonne, IPAC, and several U.S. universities to coordinate with the Roman Project Infrastructure Teams, SLAC, and the Rubin LSST DESC (Legacy Survey of Space and Time Dark Energy Science Collaboration). The Theta supercomputer was operated by the Argonne Leadership Computing Facility, a DOE Office of Science user facility.
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      The Vera C. Rubin Observatory is a federal project jointly funded by the National Science Foundation and the DOE Office of Science, with early construction funding received from private donations through the LSST Discovery Alliance.
      Download high-resolution video and images from NASA’s Scientific Visualization Studio
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Explore More
      5 min read Millions of Galaxies Emerge in New Simulated Images From NASA’s Roman
      Article 1 year ago 5 min read How NASA’s Roman Space Telescope Will Rewind the Universe
      Article 1 year ago 6 min read How NASA’s Roman Space Telescope Will Chronicle the Active Cosmos
      Article 7 months ago Share
      Details
      Last Updated Jun 12, 2024 Related Terms
      Nancy Grace Roman Space Telescope Astrophysics Dark Energy Dark Matter Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Goddard Space Flight Center High-Tech Computing Missions Science & Research Science-enabling Technology Stars Technology Technology Research The Universe 6 Min Read NASA’s Roman Mission Gets Cosmic ‘Sneak Peek’ From Supercomputers
      This synthetic image is a slice of a much larger simulation depicting the cosmos as NASA's Nancy Grace Roman Space Telescope will see it when it launches by May 2027. Every blob and speck of light represents a distant galaxy (except for the urchin-like spiky dots, which represent foreground stars in our Milky Way galaxy). Credits: C. Hirata and K. Cao (OSU) and NASA’s Goddard Space Flight Center View the full article
    • By NASA
      3 min read
      Hubble Sees New Star Proclaiming Presence with Cosmic Lightshow
      This new image from NASA’s Hubble Space Telescope features the FS Tau star system. NASA, ESA, and K. Stapelfeldt (NASA JPL); Image Processing: Gladys Kober (NASA/Catholic University of America) Jets emerge from the cocoon of a newly forming star to blast across space, slicing through the gas and dust of a shining nebula in this new image from NASA’s Hubble Space Telescope.
      FS Tau is a multi-star system made up of FS Tau A, the bright star-like object near the middle of the image, and FS Tau B (Haro 6-5B), the bright object to the far right obscured by a dark, vertical lane of dust. The young objects are surrounded by gently illuminated gas and dust of this stellar nursery. The system is only about 2.8 million years old, very young for a star system. Our Sun, by contrast, is about 4.6 billion years old.
      FS Tau B is a newly forming star, or protostar, surrounded by a protoplanetary disk, a pancake-shaped collection of dust and gas leftover from the formation of the star that will eventually coalesce into planets. The thick dust lane, seen nearly edge-on, separates what are thought to be the illuminated surfaces of the flared disk.
      FS Tau B is likely in the process of becoming a T Tauri star, a type of young variable star that hasn’t begun nuclear fusion yet but is beginning to evolve into a hydrogen-fueled star similar to our Sun. Protostars shine with the heat energy released as the gas clouds from which they are forming collapse, and from the accretion of material from nearby gas and dust. Variable stars are a class of star whose brightness changes noticeably over time.
      FS Tau A is itself a T Tauri binary system, consisting of two stars orbiting each other.
      Protostars are known to eject fast-moving, column-like streams of energized material called jets, and FS Tau B provides a striking example of this phenomenon. The protostar is the source of an unusual asymmetric, double-sided jet, visible here in blue. Its asymmetrical structure may result from the difference in the rates at which mass is being expelled from the object.
      FS Tau B is also classified as a Herbig-Haro object. Herbig–Haro objects form when jets of ionized gas ejected by a young star collide with nearby clouds of gas and dust at high speeds, creating bright patches of nebulosity.
      FS Tau is part of the Taurus-Auriga region, a collection of dark molecular clouds that are home to numerous newly forming and young stars, roughly 450 light-years away in the constellations of Taurus and Auriga. Hubble has previously observed this region, whose star-forming activity makes it a compelling target for astronomers. Hubble took these observations as part of an investigation of edge-on dust disks around young stellar objects.

      Download this image

      Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Mar 25, 2024 Editor Andrea Gianopoulos Location Goddard Space Flight Center Related Terms
      Goddard Space Flight Center Hubble Space Telescope Missions Nebulae Protostars Stars The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Galaxies Stories



      Stars Stories



      NASA Astrophysics


      View the full article
    • By NASA
      4 min read
      NASA’s Tiny BurstCube Mission Launches to Study Cosmic Blasts
      BurstCube, shown in this artist’s concept, will orbit Earth as it hunts for short gamma-ray bursts. NASA’s Goddard Space Flight Center Conceptual Image Lab NASA’s BurstCube, a shoebox-sized satellite designed to study the universe’s most powerful explosions, is on its way to the International Space Station.
      The spacecraft travels aboard SpaceX’s 30th Commercial Resupply Services mission, which lifted off at 4:55 p.m. EDT on Thursday, March 21, from Launch Complex 40 at Cape Canaveral Space Force Station in Florida. After arriving at the station, BurstCube will be unpacked and later released into orbit, where it will detect, locate, and study short gamma-ray bursts – brief flashes of high-energy light.
      “BurstCube may be small, but in addition to investigating these extreme events, it’s testing new technology and providing important experience for early career astronomers and aerospace engineers,” said Jeremy Perkins, BurstCube’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The BurstCube satellite sits in its flight configuration in this photo taken in the Goddard CubeSat Lab in 2023. NASA/Sophia Roberts
      Download high-resolution images and videos of BurstCube.

      Short gamma-ray bursts usually occur after the collisions of neutron stars, the superdense remnants of massive stars that exploded in supernovae. The neutron stars can also emit gravitational waves, ripples in the fabric of space-time, as they spiral together.
      Astronomers are interested in studying gamma-ray bursts using both light and gravitational waves because each can teach them about different aspects of the event. This approach is part of a new way of understanding the cosmos called multimessenger astronomy.
      The collisions that create short gamma-ray bursts also produce heavy elements like gold and iodine, an essential ingredient for life as we know it.
      Currently, the only joint observation of gravitational waves and light from the same event – called GW170817 – was in 2017. It was a watershed moment in multimessenger astronomy, and the scientific community has been hoping and preparing for additional concurrent discoveries since.
      “BurstCube’s detectors are angled to allow us to detect and localize events over a wide area of the sky,” said Israel Martinez, research scientist and BurstCube team member at the University of Maryland, College Park and Goddard. “Our current gamma-ray missions can only see about 70% of the sky at any moment because Earth blocks their view. Increasing our coverage with satellites like BurstCube improves the odds we’ll catch more bursts coincident with gravitational wave detections.”
      BurstCube’s main instrument detects gamma rays with energies ranging from 50,000 to 1 million electron volts. (For comparison, visible light ranges between 2 and 3 electron volts.)
      When a gamma ray enters one of BurstCube’s four detectors, it encounters a cesium iodide layer called a scintillator, which converts it into visible light. The light then enters another layer, an array of 116 silicon photomultipliers, that converts it into a pulse of electrons, which is what BurstCube measures. For each gamma ray, the team sees one pulse in the instrument readout that provides the precise arrival time and energy. The angled detectors inform the team of the general direction of the event.
      BurstCube belongs to a class of spacecraft called CubeSats. These small satellites come in a range of standard sizes based on a cube measuring 10 centimeters (3.9 inches) across. CubeSats provide cost-effective access to space to facilitate groundbreaking science, test new technologies, and help educate the next generation of scientists and engineers in mission development, construction, and testing.
      Engineers attach BurstCube to the platform of a thermal vacuum chamber at Goddard ahead of testing. NASA/Sophia Roberts “We were able to order many of BurstCube’s parts, like solar panels and other off-the-shelf components, which are becoming standardized for CubeSats,” said Julie Cox, a BurstCube mechanical engineer at Goddard. “That allowed us to focus on the mission’s novel aspects, like the made-in-house components and the instrument, which will demonstrate how a new generation of miniaturized gamma-ray detectors work in space.”
      BurstCube is led by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. It’s funded by the Science Mission Directorate’s Astrophysics Division at NASA Headquarters. The BurstCube collaboration includes: the University of Alabama in Huntsville; the University of Maryland, College Park; the University of the Virgin Islands; the Universities Space Research Association in Washington; the Naval Research Laboratory in Washington; and NASA’s Marshall Space Flight Center in Huntsville.
      By Jeanette Kazmierczak
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      (301) 286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Mar 21, 2024 Related Terms
      Astrophysics BurstCube CubeSats Gamma Rays Gamma-Ray Bursts Gravitational Waves International Space Station (ISS) Neutron Stars Sensing the Universe & Multimessenger Astronomy The Universe Explore More
      4 min read NASA’s Hubble Finds that Aging Brown Dwarfs Grow Lonely


      Article


      8 hours ago
      2 min read Hubble Views a Galaxy Under Pressure


      Article


      6 days ago
      3 min read Hubble Tracks Jupiter’s Stormy Weather


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...