Jump to content

'Spot the difference' to help reveal Rosetta image secrets


Recommended Posts

Rosetta Zoo comparison image

Today, ESA and the Zooniverse launch Rosetta Zoo, a citizen science project that invites volunteers to engage in a cosmic game of 'spot the difference'. By browsing through pictures collected by ESA's Rosetta mission, you can help scientists figure out how a comet's surface evolves as it swings around the Sun.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      The ESA website is a key tool to help us communicate about our activities. We want to make sure that our website meets the needs and expectations of our audience. That's why we are launching a survey to collect your feedback and suggestions on how to improve the esa.int website.
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Earth’s polar regions radiates much of the heat initially absorbed at the tropics out to space, mostly in the form of far-infrared radiation. Clouds in the Arctic — like these seen over a Greenland glacier — and Antarctic can trap far-infrared radiation on Earth, increasing global temperatures.NASA/GSFC/Michael Studinger Information from the PREFIRE mission will illuminate how clouds and water vapor in the Arctic and Antarctic influence the amount of heat the poles radiate into space.
      A pair of new shoebox-size NASA satellites will help unravel an atmospheric mystery that’s bedeviled scientists for years: how the behavior of clouds and water vapor at Earth’s polar regions affects our planet’s climate.
      The first CubeSat in NASA’s Polar Radiant Energy in the Far-InfraRed Experiment (PREFIRE) mission launched from New Zealand on Saturday, May 25. The second PREFIRE CubeSat is targeted to lift off on Saturday, June 1, with a launch window opening at 3 p.m. NZST (11 p.m. EDT, Friday, May 31).
      The mission will measure the amount of heat Earth emits into space from the two coldest, most remote regions on the planet. Data from PREFIRE will improve computer models that researchers use to predict how Earth’s ice, seas, and weather will change in a warming world.
      This video gives an overview of the PREFIRE mission, which aims to improve global climate change predictions by expanding scientists’ understanding of heat radiated from Earth at the polar regions. NASA/JPL-Caltech Earth absorbs a lot of the Sun’s energy in the tropics, and weather and ocean currents transport that heat toward the poles (which receive much less sunlight). Ice, snow, and clouds, among other parts of the polar environment, emit some of that heat into space, much of it in the form of far-infrared radiation. The difference between the amount of heat Earth absorbs at the tropics and that radiated out from the Arctic and Antarctic is a key influence on the planet’s temperature, helping to drive dynamic systems of climate and weather.
      But far-infrared emissions at the poles have never been systematically measured. This is where PREFIRE comes in. The mission will help researchers gain a clearer understanding of when and where Earth’s polar regions emit far-infrared radiation to space, as well as how atmospheric water vapor and clouds influence the amount that escapes.
      One of the two shoebox-size CubeSats that make up NASA’s PREFIRE mission sits on a table at Blue Canyon Technologies. The company built the satellite bus and integrated the JPL-provided thermal infrared spectrometer instrument.NASA/JPL-Caltech Clouds and water vapor can trap far-infrared radiation on Earth, thereby increasing global temperatures — part of the greenhouse effect.
      “It’s critical that we get the effects of clouds right if we want to accurately model Earth’s climate,” said Tristan L’Ecuyer, a professor at the University of Wisconsin-Madison and PREFIRE’s principal investigator.
      Clouds in Climate Modeling
      Clouds and water vapor at Earth’s poles act like windows on a summer day: A clear, relatively dry day in the Arctic is like opening a window to let heat out of a stuffy room. A cloudy, relatively humid day traps heat like a closed window.
      The types of clouds — and the altitude at which they form — influence how much heat the polar atmosphere retains. Like a tinted window, low-altitude clouds, composed mainly of water droplets, tend to have a cooling effect. High-altitude clouds, made mainly of ice particles, more readily absorb heat, generating a warming effect. Because clouds at mid-altitudes can have varying water-droplet and ice-particle contents, they can have either a warming or cooling effect.
      But clouds are notoriously difficult to study: They’re made up of microscopic particles that can move and change in a matter of seconds to hours. When it rains or snows, there’s a great reshuffling of water and energy that can alter the character of clouds entirely. These ever-changing factors complicate the task of realistically capturing cloud behavior in climate models, which try to project global climate scenarios.
      Inconsistencies in how various climate models represent clouds can mean the difference between predicting 5 or 10 degrees Fahrenheit (3 or 6 degrees Celsius) of warming. The PREFIRE mission aims to reduce that uncertainty.
      The thermal infrared spectrometer on each spacecraft will make crucial measurements of wavelengths of light in the far-infrared range. The instruments will be able to detect clouds largely invisible to other types of optical instruments. And PREFIRE’s instruments will be sensitive enough to detect the approximate size of particles to distinguish between liquid droplets and ice particles.
      “PREFIRE will give us a new set of eyes on clouds,” said Brian Kahn, an atmospheric scientist at NASA’s Jet Propulsion Laboratory and a member of the PREFIRE science team. “We’re not quite sure what we’re going to see, and that’s really exciting.”
      More About the Mission
      PREFIRE was jointly developed by NASA and the University of Wisconsin-Madison. A division of Caltech in Pasadena, California, JPL manages the mission for NASA’s Science Mission Directorate and provided the spectrometers. Blue Canyon Technologies built the CubeSats, and the University of Wisconsin-Madison will process and analyze the data the instruments collect.
      NASA’s Launch Services Program selected Rocket Lab to launch both spacecraft as part of the agency’s Venture-class Acquisition of Dedicated and Rideshare (VADR) contract. CubeSats like PREFIRE serve as an ideal platform for technical and architecture innovation, contributing to NASA’s science research and technology development.
      To learn more about PREFIRE, visit:
      https://science.nasa.gov/mission/prefire/
      5 Things to Know About NASA’s Tiny Twin Polar Satellites Get the PREFIRE fact sheet Meet NASA’s Twin Spacecraft Headed to the Ends of the Earth News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-076
      Share
      Details
      Last Updated May 30, 2024 Related Terms
      PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) Climate Change Earth Earth Science Jet Propulsion Laboratory Explore More
      6 min read NASA to Measure Moonquakes With Help From InSight Mars Mission
      Article 1 day ago 6 min read Ongoing Venus Volcanic Activity Discovered With NASA’s Magellan Data
      Article 3 days ago 6 min read New Images From Euclid Mission Reveal Wide View of the Dark Universe
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Images from the November 2023 flyby of asteroid Dinkinesh by NASA’s Lucy spacecraft show a trough on Dinkinesh where a large piece — about a quarter of the asteroid — suddenly shifted, a ridge, and a separate contact binary satellite (now known as Selam). Scientists say this complicated structure shows that Dinkinesh and Selam have significant internal strength and a complex, dynamic history.
      Panels a, b, and c each show stereographic image pairs of the asteroid Dinkinesh taken by the NASA Lucy Spacecraft’s L’LORRI Instrument in the minutes around closest approach on Nov. 1, 2023. The yellow and rose dots indicate the trough and ridge features, respectively. These images have been sharpened and processed to enhance contrast. Panel d shows a side view of Dinkinesh and its satellite Selam taken a few minutes after closest approach.NASA/GSFC/SwRI/Johns Hopkins APL/NOIRLab “We want to understand the strengths of small bodies in our solar system because that’s critical for understanding how planets like Earth got here,” said Hal Levison, Lucy principal investigator at the Boulder, Colorado, branch of the Southwest Research Institute in San Antonio, Texas. “Basically, the planets formed when zillions of smaller objects orbiting the Sun, like asteroids, ran into each other. How objects behave when they hit each other, whether they break apart or stick together, has a lot to do with their strength and internal structure.” Levison is lead author of a paper on these observations published May 29 in Nature.
      On November 1, 2023, NASA’s Lucy spacecraft flew by the main-belt asteroid Dinkinesh. Now, the mission has released pictures from Lucy’s Long Range Reconnaissance Imager taken over a roughly three-hour period, providing the best views of the asteroid to date. During the flyby, Lucy discovered that Dinkinesh has a small moon, which the mission named “Selam,” a greeting in the Amharic language meaning “peace.” Lucy is the first mission designed to visit the Jupiter Trojans, two swarms of asteroids trapped in Jupiter’s orbit that may be “fossils” from the era of planet formation. Credit: NASA’s Goddard Space Flight Center. Download this video and more at: https://svs.gsfc.nasa.gov/14596/ Researchers think that Dinkinesh is revealing its internal structure by how it has responded to stress. Over millions of years rotating in the sunlight, the tiny forces coming from the thermal radiation emitted from the asteroid’s warm surface generated a small torque that caused Dinkinesh to gradually rotate faster, building up centrifugal stresses until part of the asteroid shifted into a more elongated shape. This event likely caused debris to enter into a close orbit, which became the raw material that produced the ridge and satellite.
      Stereo movie of asteroid Dinkinesh from NASA’s Lucy spacecraft flyby on Nov. 1, 2023.NASA/GSFC/SwRI/Johns Hopkins APL/NOIRLab/Brian May/Claudia Manzoni If Dinkinesh were much weaker, more like a fluid pile of sand, its particles would have gradually moved toward the equator and flown off into orbit as it spun faster. However, the images suggest that it was able to hold together longer, more like a rock, with more strength than a fluid, eventually giving way under stress and fragmenting into large pieces. (Although the amount of strength needed to fragment a small asteroid like Dinkinesh is miniscule compared to most rocks on Earth.)
      “The trough suggests an abrupt failure, more an earthquake with a gradual buildup of stress and then a sudden release, instead of a slow process like a sand dune forming,” said Keith Noll of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, project scientist for Lucy and a co-author of the paper.
      “These features tell us that Dinkinesh has some strength, and they let us do a little historical reconstruction to see how this asteroid evolved,” said Levison. “It broke, things moved apart and formed a disk of material during that failure, some of which rained back onto the surface to make the ridge.”
      The researchers think some of the material in the disk formed the moon Selam, which is actually two objects touching each other, a configuration called a contact binary. Details of how this unusual moon formed remain mysterious.
      Stereo movie of Selam from NASA’s Lucy spacecraft flyby on Nov. 1, 2023.NASA/GSFC/SwRI/Johns Hopkins APL/NOIRLab/Brian May/Claudia Manzoni Dinkinesh and its satellite are the first two of 11 asteroids that Lucy’s team plans to explore over its 12-year journey. After skimming the inner edge of the main asteroid belt, Lucy is now heading back toward Earth for a gravity assist in December 2024. That close flyby will propel the spacecraft back through the main asteroid belt, where it will observe asteroid Donaldjohanson in 2025, and then on to the first of the encounters with the Trojan asteroids that lead and trail Jupiter in its orbit of the Sun beginning in 2027.
      Lucy’s principal investigator is based out of the Boulder, Colorado, branch of Southwest Research Institute, headquartered in San Antonio. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space in Littleton, Colorado, built and operates the spacecraft. Lucy is the 13th mission in NASA’s Discovery Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Discovery Program for the Science Mission Directorate at NASA Headquarters in Washington.
      For more information about NASA’s Lucy mission, visit:
      https://science.nasa.gov/mission/lucy
      Share
      Details
      Last Updated May 29, 2024 EditorWilliam SteigerwaldContactWilliam Steigerwaldwilliam.a.steigerwald@nasa.govLocationGoddard Space Flight Center Related Terms
      Asteroids General The Solar System Explore More
      1 min read What are the Trojan Asteroids? We Asked a NASA Scientist
      What are the Trojan asteroids? These mysterious space rocks have been gravitationally trapped in Jupiter’s…
      Article 2 years ago 3 min read Asteroid Fast Facts
      Article 10 years ago 13 min read NASA’s Lucy Mission: A Journey to the Young Solar System
      NASA’s Lucy spacecraft launched Oct. 16, 2021, on a 12-year journey to Jupiter’s Trojan asteroids.
      Article 3 years ago View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      JPL engineers and technicians prepare NASA’s Farside Seismic Suite for testing in simulated lunar gravity, which is about one-sixth of Earth’s. The payload will gather the agency’s first seismic data from the Moon in nearly 50 years and take the first-ever seismic measurements from the far side.NASA/JPL-Caltech NASA’s Farside Seismic Suite undergoes work in a JPL clean room in March. The instrument’s two sensitive seismometers are packaged in a cube-within-a-cube structure with a battery, a computer, and electronics. The shiny blanket is an outer insulating layer; the single solar panel provides power.NASA/JPL-Caltech The technology behind the two seismometers that make up NASA’s Farside Seismic Suite was used to detect more than a thousand Red Planet quakes.
      The most sensitive instrument ever built to measure quakes and meteor strikes on other worlds is getting closer to its journey to the mysterious far side of the Moon. It’s one of two seismometers adapted for the lunar surface from instruments originally designed for NASA’s InSight Mars lander, which recorded more than 1,300 marsquakes before the mission’s conclusion in 2022.
      Part of a payload called Farside Seismic Suite (FSS) that was recently assembled at NASA’s Jet Propulsion Laboratory in Southern California, the two seismometers are expected to arrive in 2026 at Schrödinger basin, a wide impact crater about 300 miles (500 kilometers) from the Moon’s South Pole. The self-sufficient, solar-powered suite has its own computer and communications equipment, plus the ability to protect itself from the extreme heat of lunar daytime and the frigid conditions of night.
      Lunar Seismic Firsts
      After being delivered to the surface by a lunar lander under NASA’s CLPS (Commercial Lunar Payload Services) initiative, the suite will return the agency’s first seismic data from the Moon since the last Apollo program seismometers were in operation nearly 50 years ago. Not only that, but it will also provide the first-ever seismic measurements from the Moon’s far side.
      The Seismic Experiment for Interior Structure instrument (SEIS) aboard NASA’s Mars InSight is within the copper-colored hexagonal enclosure in this photo taken by a camera on the lander’s robotic arm on Dec. 4, 2018. The SEIS technology is being used on Farside Seismic Suite, bound for the Moon.NASA/JPL-Caltech Up to 30 times more sensitive than its Apollo predecessors, the suite will record the Moon’s seismic “background” vibration, which is driven by micrometeorites the size of small pebbles that pelt the surface. This will help NASA better understand the current impact environment as the agency prepares to send Artemis astronauts to explore the lunar surface.
      Planetary scientists are eager to see what FSS tells them about the Moon’s internal activity and structure. What they learn will offer insights into how the Moon — as well as rocky planets like Mars and Earth — formed and evolved.
      It will also answer a lingering question about moonquakes: Why did the Apollo instruments on the lunar near side detect little far-side seismic activity? One possible explanation is that something in the Moon’s deep structure essentially absorbs far-side quakes, making them harder for Apollo’s seismometers to have sensed. Another is that there are fewer quakes on the far side, which on the surface looks very different from the side that faces Earth.
      “FSS will offer answers to questions we’ve been asking about the Moon for decades,” said Mark Panning, the FSS principal investigator at JPL and project scientist for InSight. “We cannot wait to start getting this data back.”
      Mars-to-Moon Science
      Farside Seismic Suite’s two complementary instruments were adapted from InSight designs to perform in lunar gravity — less than half that of Mars, which, in turn, is about a third of Earth’s. They’re packaged together with a battery, the computer, and electronics inside a cube structure that’s surrounded by insulation and an outer protective cube. Perched atop the lander, the suite will gather data continuously for at least 4½ months, operating through the long, cold lunar nights.
      Seen here during assembly in November 2023, Farside Seismic Suite’s inner cube houses the NASA payload’s large battery (at rear) and its two seismometers. The gold, puck-shaped device holds the Short Period sensor, while the silver enclosure contains the Very Broadband seismometer. NASA/JPL-Caltech The Very Broadband seismometer, or VBB, is the most sensitive seismometer ever built for use in space exploration: It can detect ground motions smaller than the size of a single hydrogen atom. A fat cylinder about 5 inches (14 centimeters) in diameter, it measures up-and-down movement using a pendulum held in place by a spring. It was originally constructed as an emergency replacement instrument (a “flight spare”) for InSight by the French space agency, CNES (Centre National d’Études Spatiales).
      Philippe Lognonné of Institut de Physique du Globe de Paris, the principal investigator for InSight’s seismometer, is an FSS co-investigator and VBB instrument lead. “We learned so much about Mars from this instrument, and now we are thrilled with the opportunity to turn that experience toward the mysteries of the Moon,” he said.
      The suite’s smaller seismometer, called the Short Period sensor, or SP, was built by Kinemetrics in Pasadena, California, in collaboration with the University of Oxford and Imperial College, London. The puck-shaped device measures motion in three directions using sensors etched into a trio of square silicon chips each about 1 inch (25 millimeters) wide.
      Assembled and Tested
      The FSS payload came together at JPL over the last year. In recent weeks, it survived rigorous environmental testing in vacuum and extreme temperatures that simulate space, along with severe shaking that mimics the rocket’s motion during launch.
      “The JPL team has been excited from the beginning that we’re going to the Moon with our French colleagues,” said JPL’s Ed Miller, FSS project manager and, like Panning and Lognonné, a veteran of the InSight mission. “We went to Mars together, and now we’ll be able to look up at the Moon and know we built something up there. It’ll make us so proud.”
      More About the Mission
      A division of Caltech in Pasadena, California, JPL manages, designed, assembled, and tested Farside Seismic Suite. The French space agency, CNES (Centre National d’Études Spatiales), and IPGP (Institut de Physique du Globe de Paris) provided the suite’s Very Broadband seismometer with support from Université Paris Cité and the CNRS (Centre National de la Recherche Scientifique). Imperial College, London and the University of Oxford collaborated to provide the Short Period sensor, managed by Kinemetrics in Pasadena. The University of Michigan provided the flight computer, power electronics, and associated software.
      A selection of NASA’s PRISM (Payloads and Research Investigations on the Surface of the Moon), FSS is funded by the Exploration Science Strategy and Integration Office within the agency’s Science Mission Directorate. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center provides program management. FSS will land on the Moon as part of an upcoming lunar delivery under NASA’s CLPS (Commercial Lunar Payload Services) initiative.
      More information about FSS is at:
      https://go.nasa.gov/FSS
      News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2024-074
      Share
      Details
      Last Updated May 29, 2024 Related Terms
      Earth's Moon Artemis Commercial Lunar Payload Services (CLPS) Jet Propulsion Laboratory Lunar Science Planetary Geosciences & Geophysics Planetary Science Science Instruments Explore More
      6 min read Ongoing Venus Volcanic Activity Discovered With NASA’s Magellan Data
      Article 2 days ago 4 min read What is 3D-MAT?
      Article 6 days ago 6 min read New Images From Euclid Mission Reveal Wide View of the Dark Universe
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Getting Ready to Image Faraway Planets on This Week @NASA – May 24, 2024
  • Check out these Videos

×
×
  • Create New...