Jump to content

Eddie Vedder of Pearl Jam Speaks with Astronauts in Space


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA astronaut and Expedition 64 Flight Engineer Victor Glover reviews procedures on a computer for the Monoclonal Antibodies Protein Crystal Growth (PCG) experiment inside the Harmony module. Each year, Black Space Week celebrates the achievements of Black Americans in space-related fields.
      To kick-off Black Space Week 2024, NASA is collaborating with the National Space Council for the Beyond the Color Lines: From Science Fiction to Science Fact forum on Monday, June 17, at 11:30 a.m. EDT at the National Museum of African American History and Culture in Washington.
      Participants include Mr. Chirag Parikh, Deputy Assistant to the President and Executive Director, National Space Council; Dr. Quincy Brown, Director of Space STEM and Workforce Policy, White House National Space Council; and other private-sector and government agency leadership. 
      Current and former NASA astronauts will join the Standing on the Shoulders of Giants panel to discuss the past, present, and future of space exploration. The panel will be moderated by the Honorable Charles F. Bolden Jr.\, former administrator of NASA and a former astronaut who flew on four Space Shuttle missions. Participants include:
      Victor J. Glover, Jr., NASA Astronaut and U.S. Navy Captain Jessica Watkins, NASA Astronaut Yvonne Cagle, NASA Astronaut Leland Melvin, former NASA Astronaut Joan Higginbotham, former NASA Astronaut Additional panels include HERStory, sharing the untold stories of Black women leaders in space, STEM, arts, diplomacy, and business, and a discussion with young leaders, educators, and scientists about education and career paths for the future of space.
      Additional event details, including registration and streaming information, can be found at nmaahc.si.edu.
      View the full article
    • By European Space Agency
      Image: The Copernicus Sentinel-2 mission takes us over a section of Italy’s heel in the southern part of the boot-shaped peninsula. View the full article
    • By NASA
      Background: To protect astronauts from spaceflight health risks like solar radiation and microgravity, scientists develop countermeasures by studying model organisms exposed to the space environment. For the first time, commercial astronaut data from the Inspiration4 (I4) mission has been collected for open-access research in an effort led by Weill Cornell Medicine. ARC’s Open Science Data Repository (OSDR) hosts this data for public use. Facilitated by the OSDR, data from the all-civilian crew enables researchers to validate decades of model organism research and make vital discoveries from biospecimens of humans. The OSDR’s Analysis Working Groups (AWGs), comprised of researchers from around the globe, collaborate to maximize the scientific value of space omics data.
      Main Findings: On June 11, 44 scientific publications, including 32 authored by members of the AWG community and the OSDR team, were prominently featured in the Space Omics and Medical Atlas (SOMA) package of publications in Nature Press. The collection of articles greatly expands our knowledge of how space travel affects humans by addressing questions about the transcriptomic, epigenomic, cellular, microbiome, and mitochondrial alterations observed during spaceflight. Results and best practices from these articles collectively inform SOMA, which provides a standardized approach to spaceflight related research (Figure).
      Impact: The AWG studies featured in these publications leverage the I4 data alongside other OSDR data to pioneer novel discoveries and formulate new hypotheses aimed at uncovering systemic biological responses during spaceflight. Historically, AWG collaborations have led to numerous scientific presentations at conferences, publications in high-impact journals, and the introduction of many new and more diverse researchers into the field.
      Keep Exploring Discover More Topics From NASA
      NASA Biological & Physical Sciences
      BPS administers NASA’s: BPS partners with the research community and a wide range of organizations to accomplish its mission. Grants…
      International Space Station
      Human Research Program
      Ames Research Center
      View the full article
    • By NASA
      Lakita Lowe is at the forefront of space commercialization, seamlessly merging scientific expertise with visionary leadership to propel NASA’s commercial ambitions and ignite a passion for STEM in future generations. As a project integrator for NASA’s Commercial Low Earth Orbit Development Program (CLDP), Lowe leverages her extensive background in scientific research and biomedical studies to bridge the gap between science and commercial innovation. 

      Lowe recently supported both planning and real-time operations contributing to the successful completion of the Axiom-3 private astronaut mission which launched in January 2024 and is gearing up to serve as CLDP’s Axiom-4 private astronaut mission lead. Her responsibilities include managing commercial activity requests to ensure they align with NASA’s policies, supporting real-time mission operations from CLDP’s console station, and working with various stakeholders to ensure commercial policy documentation is updated to align with the agency’s current guidelines. 

      “The commercially owned and operated low Earth orbit destinations will offer services that NASA, along with other customers, can purchase, thereby stimulating the growth of commercial activities,” said Lowe.  
      Official portrait of Lakita Lowe. Credit: NASA/Bill Stafford Initially set to attend pharmacy school, a chance encounter at a career fair led her to NASA. Seventeen years later, Lowe now supports the enablement of NASA’s goal to transition human presence in low Earth orbit from a government-run destination to a sustainable economy.  

      Lowe’s work has spanned various NASA programs, including the Human Health and Performance Directorate in the Biomedical Research and Environmental Sciences (BRES) Division. Lowe’s role in BRES supported NASA research involving the understanding of human adaptation to spaceflight and planetary environments, the development of effective countermeasures, and the development and dissemination of scientific and technological knowledge.  

      “The efforts that go into preparing crew members for spaceflight and ensuring they maintain good health upon their return to Earth is amazing,” she said, highlighting their rigorous pre-flight and post-flight testing.
      Lakita Lowe prepares samples for analysis in a microbiology laboratory at NASA’s Johnson Space Center in Houston. Lowe’s passion for science was ignited in high school by her biology teacher, whose teaching style captivated her curiosity. She received a bachelor’s degree in biology and a master’s in chemistry from Southern University and A&M College in Baton Rouge, Louisiana. With five publications completed during her tenure at NASA (two of which were NASA-related), Lowe has contributed to our understanding of the agency’s vision for human spaceflight and commercial research and development on the orbiting laboratory. 

      Lowe is in the process of completing her Ph.D. in Education (Learning, Design, and Technology) from Oklahoma State University in Stillwater, Oklahoma, with a dissertation involving the establishment of telesurgery training programs at medical institutions. She is exploring a field that holds significant promise for space exploration and remote medical care. This technology will enable surgical procedures to be performed remotely, a vital capability for astronauts on long-duration missions. 
      Lakita Lowe at the 2022 International Space Station Research & Development Conference (ISSRDC) in Washington D.C. Lowe dedicated 14 years of her career to integrating science payloads for the International Space Station Program. Early in her career, she worked as a payloads flight controller as a lead increment scientist representative, a dual position between NASA’s Johnson Space Center in Houston and Marshall Space Flight Center in Huntsville, Alabama. After two years supporting real-time console operations, Lowe served as a research scientist with NASA’s Program Scientist’s Office, where she assessed individual science priorities for the agency’s sponsoring organizations’ portfolio to be implemented on the space station.  

      Later in her career, she worked as a research portfolio manager in the International Space Station Program’s Research Integration Office where she managed the feasibility and strategic planning for investigations involving remote sensing, technology development, STEM, and commercial utilization. She worked closely with researchers sending their experiments to the orbiting laboratory, tracking their progress from start to finish.  

      Now, in the commercial sector, her focus has shifted toward policy and compliance, ensuring commercial activities align with NASA’s regulations and guidance. 
      Lakita Lowe (second to left) at a NSBE SCP (National Society of Black Engineers – Space City Professionals) Chapter membership drive on May 23, 2023. Credit: NASA/Robert Markowitz For Lowe, one of the most rewarding aspects of her job is the ability to inspire young minds. Her advice to young Black women interested in STEM is to not limit themselves and to explore the vast opportunities NASA offers beyond engineering and science roles. She emphasizes the importance of NASA engaging with Historically Black Colleges and Universities and minority-serving institutions to spread awareness about the opportunities within the agency.  

      “Considering my busy schedule, I try to make myself available for speaking engagements and mentoring early-career individuals when possible,” she said. 

      Lowe actively participates in organizations like the National Society of Black Engineers and serves as a mentor to interns at Johnson. She is also a member of Alpha Kappa Alpha Sorority Incorporated, the Honor Society of Phi Kappa Phi, and Johnson’s African American Employee Resource Group. 
      Lowe poses for a selfie at Oklahoma State University in Stillwater, Oklahoma. Lowe’s relentless pursuit of knowledge and her unwavering dedication to STEM education continue to inspire generations and pave the way for a more dynamic future in human spaceflight.  

      “As an African American woman at NASA, I am excited about the future of space exploration, where diversity and inclusion will drive innovative solutions and inspire the next generation to reach for the stars.” 
      View the full article
    • By NASA
      From navigating the depths of the human mind to exploring the vastness of space, Dr. Alexandra (Sandra) Whitmire helps lead research on the effects of prolonged isolation and confinement as NASA prepares to voyage to the Moon and eventually Mars. 

      Whitmire is the lead scientist for the Human Factors and Behavioral Performance element (HFBP) within NASA’s Human Research Program, or HRP. HFBP selects, supports, and helps design studies for Johnson Space Center’s HERA (Human Exploration Research Analog), which conducts missions simulating isolation and confinement to further understand psychological effects on humans.  

      These studies evaluate how crews work as a team and overcome stressors, bringing to light the potential effects of prolonged isolation on behavioral health. They also help reveal strategies for keeping crew members cohesive and engaged on long-duration missions. With greater workloads, higher stress, and more isolation anticipated in future spaceflight missions, especially with communication delays, this research is crucial. 
      Alexandra Whitmire at a Human Resources swearing-in ceremony at NASA’s Johnson Space Center.Credit: NASA/Robert Markowitz Strategies that support astronauts’ mental health have been around since the early days of spaceflight, and a strong team at NASA is in place to support the behavioral health of crews on the International Space Station. This team facilitates services such as communication with family, regular provision of crew care packages, and guidance on the optimal use of onboard methods that seek to counter adverse effects of spaceflight. For instance, lighting systems that simulate daytime and nighttime can help maintain circadian rhythms in the dark of deep space. HFBP learns from the astronauts’ current psychological support teams, while also planning a research strategy that aims to maintain this level of care in future missions beyond low Earth orbit.  

      Initially working through KBR as a research coordinator, Whitmire played a key role in establishing NASA’s behavioral health and performance research group in 2006. Over time, this small group advocated for dedicated research facilities, leading to the creation of HERA in 2013 and a Behavioral Health and Performance Laboratory in 2016. HFBP also initiates and oversees studies in Antarctica, and also created and managed studies previously conducted through the Scientific International Research In a Unique terrestrial Station, or SIRIUS, a series of international missions that were held inside a ground-based analog facility in Moscow, Russia. 

      Whitmire’s role now involves managing projects aimed at mitigating risks for future spaceflight. She specializes in fatigue management, performance measurement, and strategies to counter behavioral changes that may result from spaceflight.  

      “My journey to NASA was quite unexpected,” she said. “With a background in psychology and writing, I never imagined I’d find an opportunity working in space exploration.” 
      Whitmire began her career supporting the state of Texas and MD Anderson Cancer Center on organizational development. She joined NASA’s HRP in 2006 as a research coordinator for the Human Health and Performance element. 

      Whitmire completed her bachelor’s degree in English and Psychology from the University of Texas at Austin. She then earned her master’s in psychology, with a focus on experimental psychology, from the University of Texas in San Antonio, and years later, while continuing her full-time work with KBR, she completed her doctorate in psychology from Capella University. 
      Katie Koube, a HERA (Human Exploration Research Analog) crew member from Campaign 6 Mission 4, prepares food inside the ground-based habitat. Through HERA missions, HRP conducts studies that seek to evaluate how crew health and performance can be affected by stressors anticipated in future exploration missions.  One example study, led by Dr. Grace Douglas, a food technology scientist at Johnson, explored a restricted food system in which meals were replaced with compact bars. Douglas found that limited food options were associated with reduced eating and caloric intake, as well as decrements in mood, highlighting the importance of an acceptable food system for mental well-being on long duration missions.  

      Another study led by Dr. Leslie DeChurch, a professor of Communication and Psychology from Northwestern University in Evanston, Ill., revealed that teams performed worse on a complex, conceptual task at the end of a mission compared to earlier on, highlighting the need to maintain team cohesion and performance over time. Still more studies seek to evaluate the effects of communications delays of up to five minutes each way between crew and HERA’s mission control, which sits just outside the HERA facility.   

      As NASA prepares to launch the first crewed Artemis missions, HRP’s behavioral health team is also incorporating studies to address Moon-specific challenges. The team is focused on the unique demands of lunar landings, such as high-tempo operations and seconds-long communication delays. The current goal is to increase the fidelity of HERA to future Artemis missions to ensure that more meaningful, operationally-relevant results emerge from future investigations.  
      The HERA Campaign 7 Mission 1 crew members inside the analog environment at NASA’s Johnson Space Center in Houston. Through these studies, scientists learn valuable lessons about resilience and coping mechanisms that can benefit future space missions. Their findings emphasize the importance of maintaining social connections, adequate work-rest schedules, and opportunities for exercise to support mental health. Being intentional and reflective with gratitude and positive emotions has also shown significant value, Whitmire notes, adding that during her time at NASA, she has learned more about the importance of relationships, communication, and resolving problems together as a team. 

      “Overall, our goal is to ensure that astronauts are well-prepared for and supported through the psychological demands of space exploration. We seek to apply these insights to improve mental health support for everyone,” Whitmire said. “All of us can learn from these crew members in their periods of isolation to get insights on how to live happier, healthier lives here on Earth.” 
      View the full article
  • Check out these Videos

×
×
  • Create New...