Jump to content

A close up view of the Sun - Seen from @NASA's Solar Dynamics Observatory

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Science in Space: June 2024
      The Sun wields a huge influence on Earth. Its gravity holds our planet in its orbit, and solar energy drives the seasons, ocean currents, weather, climate, radiation belts, and auroras on Earth.
      The solar wind, a flow of charged particles from the Sun, constantly bombards Earth’s magnetosphere, a vast magnetic shield around the planet. The Sun occasionally releases massive amounts of energy, creating solar geomagnetic storms that can interfere with communications and navigation and disrupt the electric power grid.
      The colorful aurora borealis or Northern Lights and aurora australis or Southern Lights are created by the transfer of energy from solar electrons to molecules in Earth’s upper atmosphere. Those molecules then release that energy in the form of light. Different molecules create specific colors, such as green from oxygen.
      Because Earth’s magnetic field directs solar electrons toward the poles, auroras typically are visible only at high latitudes, such as in Canada in the north and Australia in the south. But solar storms can send the lights into much lower latitudes. During a series of large solar eruptions in May 2024, for example, the display could be seen as far south as Texas and California.
      Satellites captured auroras visible across the globe on May 11, 2024.NOAA NASA has multiple missions studying how the Sun and solar storms affect Earth and space travel. The International Space Station contributes to this research in several ways. 
      Improved Solar Energy Measurements
      The station’s Total and Spectral Solar Irradiance Sensor (TSIS) measures solar irradiance, the solar energy Earth receives, and solar spectral irradiance, a measure of the Sun’s energy in individual wavelengths. Knowing the magnitude and variability of solar irradiance improves understanding of Earth’s climate, atmosphere, and oceans and enables more accurate predictions of space weather. Better predictions could in turn help protect humans and satellites in space and electric power transmission and radio communications on the ground. 
      The first five years of TSIS observations demonstrated improved long-term spectral readings and lower uncertainties than measurements from a previous NASA mission, the Solar Radiation and Climate satellite. The accuracy of TSIS observations could improve models of solar irradiance variability and contribute to a long-term record of solar irradiance data. 
      Earlier Sun Monitoring
      Installation of the Solar instruments on the space station during a spacewalk.NASA The ESA (European Space Agency) Sun Monitoring on the External Payload Facility of Columbus, or Solar, collected data on solar energy output for more than a decade with three instruments covering most wavelengths of the electromagnetic spectrum. Different wavelengths emitted by the Sun are absorbed by and influence Earth’s atmosphere and contribute to our climate and weather. This monitoring helps scientists see how solar irradiance affects Earth and provides data to create models for predicting its influence. 
      One instrument, the Solar Variable and Irradiance Monitor, covered the near-ultraviolet, visible, and thermal parts of the spectrum and helped improve the accuracy of these measurements.  
      The SOLar SPECtral Irradiance Measurement instrument covered higher ranges of the solar spectrum. Its observations highlighted significant differences from previous solar reference spectra and models. Researchers also reported that repeated observations made it possible to determine a reference spectrum for the first year of the SOLAR mission, which corresponded to a solar minimum prior to Solar Cycle 24. 
      Solar activity rises and falls over roughly 11-year cycles. The current Solar Cycle 25 began in December 2019, and scientists predicted a peak in solar activity between January and October of 2024, which included the May storms. 
      The third instrument, SOLar Auto-Calibrating EUV/UV Spectrometers, measured the part of the solar spectrum between extreme ultraviolet and ultraviolet. Most of this highly energetic radiation is absorbed by the upper atmosphere, making it impossible to measure from the ground. Results suggested that these instruments could overcome the problem of degrading sensitivity seen with other solar measuring devices and provide more efficient data collection. 
      Auroras from Space
      An aurora borealis display photographed from the International Space Station.NASA Astronauts occasionally photograph the aurora borealis from the space station and post these images.  
      For the CSA (Canadian Space Agency) AuroraMAX project, crew members photographed the aurora borealis over Yellowknife, Canada, between fall 2011 and late spring 2012. The space images, coordinated with a network of ground-based observatories across Canada, contributed to an interactive display at an art and science festival to inspire public interest in how solar activity affects Earth. The project also provides a live feed of the aurora borealis online every September through April.  
      Student Satellites
      Deployment of the Miniature X-ray Solar Spectrometer and other CubeSats from the space station.NASA The Miniature X-ray Solar Spectrometer CubeSat measured variation in solar X-ray activity to help scientists understand how it affects Earth’s upper atmosphere. Solar X-ray activity is enhanced during solar flares. Students at the University of Colorado Laboratory for Atmospheric Space Physics built the satellite, which deployed from the space station in early 2016. 
      Better data help scientists understand how solar events affect satellites, crewed missions, and infrastructure in space and on the ground. Ongoing efforts to measure how Earth’s atmosphere responds to solar storms are an important part of NASA’s plans for Artemis missions to the Moon and for later missions to Mars. 

      Melissa Gaskill 
      International Space Station Research Communications Team 
      NASA’s Johnson Space Center 

      Search this database of scientific experiments to learn more about those mentioned above. 
      Keep Exploring Discover Related Topics
      Latest News from Space Station Research
      Overview The Sun’s gravity holds the solar system together, keeping everything – from the biggest planets to the smallest particles…
      NASA Heliophysics
      Overview The Science Mission Directorate Heliophysics Division studies the nature of the Sun, and how it influences the very nature…
      Station Science 101: Earth and Space Science

      View the full article
    • By European Space Agency
      The hyperactive sunspot region responsible for the beautiful auroras earlier in May was still alive and kicking when it rotated away from Earth’s view. Watching from the other side of the Sun, the ESA-led Solar Orbiter mission detected this same region producing the largest solar flare of this solar cycle. By observing the Sun from all sides, ESA missions reveal how active sunspot regions evolve and persist, which will help improve space weather forecasting.
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The specks in this scene were caused by charged particles from a solar storm hitting a camera aboard NASA’s Curiosity Mars rover. Curiosity uses its navigation cameras to try and capture images of dust devils and wind gusts, like the one seen here.NASA/JPL-Caltech NASA’s Curiosity Mars rover captured black-and-white streaks and specks using one of its navigation cameras just as particles from a solar storm arrived on the Martian surface. These visual artifacts are caused by energetic particles hitting the camera’s image detector.NASA/JPL-Caltech In addition to producing auroras, a recent extreme storm provided more detail on how much radiation future astronauts could encounter on the Red Planet.
      Mars scientists have been anticipating epic solar storms ever since the Sun entered a period of peak activity earlier this year called solar maximum. Over the past month, NASA’s Mars rovers and orbiters have provided researchers with front-row seats to a series of solar flares and coronal mass ejections that have reached Mars — in some cases, even causing Martian auroras.
      This science bonanza has offered an unprecedented opportunity to study how such events unfold in deep space, as well as how much radiation exposure the first astronauts on Mars could encounter.
      The biggest event occurred on May 20 with a solar flare later estimated to be an X12 — X-class solar flares are the strongest of several types — based on data from the Solar Orbiter spacecraft, a joint mission between ESA (European Space Agency) and NASA. The flare sent out X-rays and gamma rays toward the Red Planet, while a subsequent coronal mass ejection launched charged particles. Moving at the speed of light, the X-rays and gamma rays from the flare arrived first, while the charged particles trailed slightly behind, reaching Mars in just tens of minutes.
      The unfolding space weather was closely tracked by analysts at the Moon to Mars Space Weather Analysis Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, which flagged the possibility of incoming charged particles following the coronal mass ejection.
      If astronauts had been standing next to NASA’s Curiosity Mars rover at the time, they would have received a radiation dose of 8,100 micrograys — equivalent to 30 chest X-rays. While not deadly, it was the biggest surge measured by Curiosity’s Radiation Assessment Detector, or RAD, since the rover landed 12 years ago.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      The purple color in this video shows auroras on Mars’ nightside as detected by the ultraviolet instrument aboard NASA’s MAVEN orbiter between May 14 and 20, 2024. The brighter the purple, the more auroras that were present.NASA/University of Colorado/LASP RAD’s data will help scientists plan for the highest level of radiation exposure that might be encountered by astronauts, who could use on the Martian landscape for protection.
      “Cliffsides or lava tubes would provide additional shielding for an astronaut from such an event. In Mars orbit or deep space, the dose rate would be significantly more,” said RAD’s principal investigator, Don Hassler of Southwest Research Institute’s Solar System Science and Exploration Division in Boulder, Colorado. “I wouldn’t be surprised if this active region on the Sun continues to erupt, meaning even more solar storms at both Earth and Mars over the coming weeks.”
      During the May 20 event, so much energy from the storm struck the surface that black-and-white images from Curiosity’s navigation cameras danced with “snow” — white streaks and specks caused by charged particles hitting the cameras.
      Similarly, the star camera NASA’s 2001 Mars Odyssey orbiter uses for orientation was inundated with energy from solar particles, momentarily going out. (Odyssey has other ways to orient itself, and recovered the camera within an hour.) Even with the brief lapse in its star camera, the orbiter collected vital data on X-rays, gamma rays, and charged particles using its High-Energy Neutron Detector.
      This wasn’t Odyssey’s first brush with a solar flare: In 2003, solar particles from a solar flare that was ultimately estimated to be an X45 fried Odyssey’s radiation detector, which was designed to measure such events.
      Learn how NASA’s MAVEN and the agency’s Curiosity rover will study solar flares and radiation at Mars during solar maximum – a period when the Sun is at peak activity. Credit: NASA/JPL-Caltech/GSFC/SDO/MSSS/University of Colorado Auroras Over Mars
      High above Curiosity, NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) orbiter captured another effect of the recent solar activity: glowing auroras over the planet. The way these auroras occur is different than those seen on Earth.
      Our home planet is shielded from charged particles by a robust magnetic field, which normally limits auroras to regions near the poles. (Solar maximum is the reason behind the recent auroras seen as far south as Alabama.) Mars lost its internally generated magnetic field in the ancient past, so there’s no protection from the barrage of energetic particles. When charged particles hit the Martian atmosphere, it results in auroras that engulf the entire planet.
      During solar events, the Sun releases a wide range of energetic particles. Only the most energetic can reach the surface to be measured by RAD. Slightly less energetic particles, those that cause auroras, are sensed by MAVEN’s Solar Energetic Particle instrument.
      Scientists can use that instrument’s data to rebuild a timeline of each minute as the solar particles screamed past, meticulously teasing apart how the event evolved.
      “This was the largest solar energetic particle event that MAVEN has ever seen,” said MAVEN Space Weather Lead, Christina Lee of the University of California, Berkeley’s Space Sciences Laboratory. “There have been several solar events in past weeks, so we were seeing wave after wave of particles hitting Mars.”
      New Spacecraft to Mars
      The data coming in from NASA’s spacecraft won’t only help future planetary missions to the Red Planet. It’s contributing to a wealth of information being gathered by the agency’s other heliophysics missions, including Voyager, Parker Solar Probe, and the forthcoming ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) mission.
      Targeting a late-2024 launch, ESCAPADE’s twin small satellites will orbit Mars and observe space weather from a unique dual perspective that is more detailed than what MAVEN can currently measure alone.
      More About the Missions
      Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington.
      MAVEN’s principal investigator is based at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder. LASP is also responsible for managing science operations and public outreach and communications. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the MAVEN mission. Lockheed Martin Space built the spacecraft and is responsible for mission operations. NASA’s Jet Propulsion Laboratory in Southern California provides navigation and Deep Space Network support. The MAVEN team is preparing to celebrate the spacecraft’s 10th year at Mars in September 2024.
      For more about these missions, visit:
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      Karen Fox / Charles Blue
      NASA Headquarters, Washington
      202-358-1600 / 202-802-5345
      karen.c.fox@nasa.gov / charles.e.blue@nasa.gov
      Last Updated Jun 10, 2024 Related Terms
      Mars Curiosity (Rover) Goddard Space Flight Center Jet Propulsion Laboratory MAVEN (Mars Atmosphere and Volatile EvolutioN) Explore More
      3 min read PACE Celebrates National Ocean Month With Colorful Views of the Planet
      Article 3 days ago 2 min read Hubble Examines a Barred Spiral’s Light
      This NASA/ESA Hubble Space Telescope image features the barred spiral galaxy NGC 3059, which lies…
      Article 3 days ago 4 min read Jonathan Lunine Appointed Chief Scientist of NASA’s Jet Propulsion Laboratory
      Article 4 days ago Keep Exploring Discover Related Topics
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      NASA’s OSIRIS-APEX Unscathed After Searing Pass of Sun
      Mission engineers were confident NASA’s OSIRIS-APEX (Origins, Spectral Interpretation, Resource Identification – Apophis Explorer) spacecraft could weather its closest ever pass of the Sun on Jan. 2, 2024. Their models had predicted that, despite traveling 25 million miles closer to the heat of the Sun than it was originally designed to, OSIRIS-APEX and its components would remain safe.
      The mission team confirmed that the spacecraft indeed had come out of the experience unscathed after downloading stored telemetry data in mid-March. The team also tested OSIRIS-APEX’s instruments in early April, once the spacecraft was far enough from the Sun to return to normal operations. Between December 2023 and March, OSIRIS-APEX was inactive, with only limited telemetry data available to the team on Earth.
      Both these images from a camera called StowCam aboard OSIRIS-APEX show the same view taken six months apart, before (left) and after (right) the Jan. 2, 2024, perihelion. Notably, there is no observable difference on spacecraft surfaces, a good indication that the higher temperatures faced during perihelion didn’t alter the spacecraft. Another insight gleaned from the identical view in the two images is that the camera’s performance was also not affected by perihelion. StowCam, a color imager, is one of three cameras comprising TAGCAMS (the Touch-and-Go Camera System), which is part of OSIRIS-APEX’s guidance, navigation, and control system. TAGCAMS was designed, built and tested by Malin Space Science Systems; Lockheed Martin integrated TAGCAMS to the OSIRIS-APEX spacecraft and operates TAGCAMS. The spacecraft’s clean bill of health was due to creative engineering. Engineers placed OSIRIS-APEX in a fixed orientation with respect to the Sun and repositioned one of its two solar arrays to shade the spacecraft’s most sensitive components during the pass.
      The spacecraft is in an elliptical orbit around the Sun that brings it to a point closest to the Sun, called a perihelion, about every nine months. To get on a path that will allow it to meet up with its new target Apophis in 2029, the spacecraft’s trajectory includes several perihelions that are closer to the Sun than the spacecraft’s components were originally designed to withstand.
      “It’s phenomenal how well our spacecraft configuration protected OSIRIS-APEX, so I’m really encouraged by this first close perihelion pass,” said Ron Mink, mission systems engineer for OSIRIS-APEX, based at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      Besides confirming that the January perihelion worked out according to predictions, engineers found surprises while testing spacecraft components. A couple of instruments came out better than expected after exposure to higher temperatures.
      A camera that helped map asteroid Bennu and will do the same at Apophis, saw a 70% reduction in “hot pixels” since April 13, 2023, the last time it was tested. Hot pixels, which are common in well-used cameras in space, show up as white spots in images when detectors accumulate exposure to high-energy radiation, mostly from our Sun.
      “We think the heat from the Sun reset the pixels through annealing,” said Amy Simon, OSIRIS-APEX project scientist, based at NASA Goddard. Annealing is a heat process that can restore function of instruments and is often done intentionally through built-in heaters on some spacecraft.
      Captured on Oct. 20, 2020, as NASA’s OSIRIS-REx spacecraft collected a sample from the surface of asteroid Bennu, this series of 82 images shows the SamCam imager’s field of view as the spacecraft approached and touched Bennu’s surface. OSIRIS-REx’s sampling head touched Bennu’s surface for approximately 6 seconds, after which the spacecraft performed a back-away burn. Credit: NASA/Goddard/University of Arizona Another welcome surprise, said Simon, came from the spacecraft’s visible and near-infrared spectrometer. Before perihelion, the spectrometer, which mapped the surface composition of Bennu, and will do the same at Apophis, seemed to have a rock from Bennu stuck inside its calibration port. Scientist suspected that some sunlight was blocked from filtering through the instrument after the spacecraft, then called OSIRIS-REx, grabbed a sample from asteroid Bennu on Oct. 20, 2020. By picking up the sample and then firing its engines to back away from Bennu, the spacecraft stirred up dust and pebbles that clung to it.
      “But, with enough spacecraft maneuvers and engine burns after sample collection,” Simon said, the rock in the calibration port appears to have been dislodged. Scientists will check the spectrometer again when OSIRIS-APEX swings by Earth on Sept. 25, 2025, for a gravitational boost.
      OSIRIS-APEX is now operating normally as it continues its journey toward asteroid Apophis for a 2029 rendezvous. Its better-than-expected performance during the first close perihelion is welcome news. But engineers caution that it doesn’t mean it’s time to relax. OSIRIS-APEX needs to execute five more exceptionally close passes of the Sun — along with three Earth gravity assists — to get to its destination. It’s unclear how the cumulative effect of six perihelions at a closer distance than designed will impact the spacecraft and its components.
      The second OSIRIS-APEX perihelion is scheduled for Sept. 1, 2024. The spacecraft will be 46.5 million miles away from the Sun, which is roughly half the distance between Earth and the Sun, and well inside the orbit of Venus.

      Learn more about the OSIRIS-APEX mission to Apophis

      By Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      View the full article
    • By European Space Agency
      ESA’s Solar Orbiter made the first ever connection between measurements of the solar wind around a spacecraft to high-resolution images of the Sun’s surface at a close distance. The success opens a new way for solar physicists to study the source regions of the solar wind.
      View the full article
  • Check out these Videos

  • Create New...