Jump to content

An astronaut awakes | Cosmic Kiss


Recommended Posts

An_astronaut_awakes_Cosmic_Kiss_card_ful Video: 00:01:35

ESA astronaut Matthias Maurer gives a glimpse into his morning routine aboard the International Space Station during his Cosmic Kiss mission.

Matthias’s crew quarters, known as CASA (short for Crew Alternate Sleep Accommodation), is located within the European Columbus science laboratory module. The glowing pink light of this module comes from NASA’s Veggie facility, where astronauts help researchers study plant growth in microgravity.

Each astronaut aboard the Space Station has their own crew quarter. No larger than a changing room, this is their bedroom in space where they can store personal items, use a laptop to contact friends and family and float to sleep in their sleeping bag.

For out more about Matthias and his Cosmic Kiss mission visit https://www.esa.int/Cosmic_kiss

Access the related broadcast quality video material.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Brandon Torres NASA astronaut Nicole Mann waves as she is introduced before throwing out the ceremonial first pitch at the San Francisco Giants versus Los Angeles Angels game at Oracle Park in San Francisco on June 14, 2024. Mann was honored for her accomplishments at the Giants’ Native American Heritage Night. She is the first Indigenous woman from NASA to go to space, having served as commander of NASA’s SpaceX Crew-5 mission, which launched in 2022.  
      View the full article
    • By NASA
      ESA/Hubble & NASA, F. Niederhofe This NASA/ESA Hubble Space Telescope image features the globular cluster NGC 2005. It’s not an unusual globular cluster in and of itself, but it is a peculiarity when compared to its surroundings. NGC 2005 is located about 750 light-years from the heart of the Large Magellanic Cloud (LMC), which is the Milky Way’s largest satellite galaxy some 162,000 light-years from Earth. Globular clusters are densely-packed groups of stars that can hold tens of thousands or millions of stars. Their density means they are tightly bound by gravity and therefore very stable. This stability contributes to their longevity: globular clusters can be billions of years old, and are often comprised of very old stars. Studying globular clusters in space can be a little like studying fossils on Earth: where fossils give insights into the characteristics of ancient plants and animals, globular clusters illuminate the characteristics of ancient stars.
      Current theories of galaxy evolution predict that galaxies merge with one another. Astronomers think the relatively large galaxies we observe in the modern universe formed when smaller galaxies merged. If this is correct, then we would expect to see evidence that the most ancient stars in nearby galaxies originated in different galactic environments. Because globular clusters hold ancient stars, and because of their stability, they are an excellent laboratory to test this hypothesis.
      NGC 2005 is such a globular cluster, and its very existence provides evidence that supports the theory of galaxy evolution via mergers. Indeed, what makes NGC 2005 a bit peculiar from its surroundings, is the fact that its stars have a chemical composition that is distinct from the stars around it in the LMC. This suggests that the LMC underwent a merger with another galaxy somewhere in its history. That other galaxy has long-since merged and otherwise dispersed, but NGC 2005 remains behind as an ancient witness to the long-past merger.
      Text Credit: European Space Agency (ESA)

      View the full article
    • By NASA
      2 min read
      Hubble Observes a Cosmic Fossil
      This NASA/ESA Hubble Space Telescope image features the globular cluster NGC 2005. ESA/Hubble & NASA, F. Niederhofer, L. Girardi This NASA/ESA Hubble Space Telescope image features the globular cluster NGC 2005. It’s not an unusual globular cluster in and of itself, but it is a peculiarity when compared to its surroundings. NGC 2005 is located about 750 light-years from the heart of the Large Magellanic Cloud (LMC), which is the Milky Way’s largest satellite galaxy some 162,000 light-years from Earth. Globular clusters are densely-packed groups of stars that can hold tens of thousands or millions of stars. Their density means they are tightly bound by gravity and therefore very stable. This stability contributes to their longevity: globular clusters can be billions of years old, and are often comprised of very old stars. Studying globular clusters in space can be a little like studying fossils on Earth: where fossils give insights into the characteristics of ancient plants and animals, globular clusters illuminate the characteristics of ancient stars.
      Current theories of galaxy evolution predict that galaxies merge with one another. Astronomers think the relatively large galaxies we observe in the modern universe formed when smaller galaxies merged. If this is correct, then we would expect to see evidence that the most ancient stars in nearby galaxies originated in different galactic environments. Because globular clusters hold ancient stars, and because of their stability, they are an excellent laboratory to test this hypothesis.
      NGC 2005 is such a globular cluster, and its very existence provides evidence that supports the theory of galaxy evolution via mergers. Indeed, what makes NGC 2005 a bit peculiar from its surroundings, is the fact that its stars have a chemical composition that is distinct from the stars around it in the LMC. This suggests that the LMC underwent a merger with another galaxy somewhere in its history. That other galaxy has long-since merged and otherwise dispersed, but NGC 2005 remains behind as an ancient witness to the long-past merger.
      Text Credit: European Space Agency (ESA)

      Download this image

      Explore More

      Hubble Space Telescope


      Hubble’s Star Clusters


      Galaxy Details and Mergers


      Tracing the Growth of Galaxies

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Jun 14, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Stars The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Galaxies Stories



      Stars Stories



      Dark Matter & Dark Energy


      View the full article
    • By NASA
      Background: To protect astronauts from spaceflight health risks like solar radiation and microgravity, scientists develop countermeasures by studying model organisms exposed to the space environment. For the first time, commercial astronaut data from the Inspiration4 (I4) mission has been collected for open-access research in an effort led by Weill Cornell Medicine. ARC’s Open Science Data Repository (OSDR) hosts this data for public use. Facilitated by the OSDR, data from the all-civilian crew enables researchers to validate decades of model organism research and make vital discoveries from biospecimens of humans. The OSDR’s Analysis Working Groups (AWGs), comprised of researchers from around the globe, collaborate to maximize the scientific value of space omics data.
      Main Findings: On June 11, 44 scientific publications, including 32 authored by members of the AWG community and the OSDR team, were prominently featured in the Space Omics and Medical Atlas (SOMA) package of publications in Nature Press. The collection of articles greatly expands our knowledge of how space travel affects humans by addressing questions about the transcriptomic, epigenomic, cellular, microbiome, and mitochondrial alterations observed during spaceflight. Results and best practices from these articles collectively inform SOMA, which provides a standardized approach to spaceflight related research (Figure).
      Impact: The AWG studies featured in these publications leverage the I4 data alongside other OSDR data to pioneer novel discoveries and formulate new hypotheses aimed at uncovering systemic biological responses during spaceflight. Historically, AWG collaborations have led to numerous scientific presentations at conferences, publications in high-impact journals, and the introduction of many new and more diverse researchers into the field.
      Keep Exploring Discover More Topics From NASA
      NASA Biological & Physical Sciences
      BPS administers NASA’s: BPS partners with the research community and a wide range of organizations to accomplish its mission. Grants…
      International Space Station
      Human Research Program
      Ames Research Center
      View the full article
    • By NASA
      Researchers are diving into a synthetic universe to help us better understand the real one. Using supercomputers at the U.S. DOE’s (Department of Energy’s) Argonne National Laboratory in Illinois, scientists have created nearly 4 million simulated images depicting the cosmos as NASA’s Nancy Grace Roman Space Telescope and the Vera C. Rubin Observatory, jointly funded by NSF (the National Science Foundation) and DOE, in Chile will see it.
      Michael Troxel, an associate professor of physics at Duke University in Durham, North Carolina, led the simulation campaign as part of a broader project called OpenUniverse. The team is now releasing a 10-terabyte subset of this data, with the remaining 390 terabytes to follow this fall once they’ve been processed.
      “Using Argonne’s now-retired Theta machine, we accomplished in about nine days what would have taken around 300 years on your laptop,” said Katrin Heitmann, a cosmologist and deputy director of Argonne’s High Energy Physics division who managed the project’s supercomputer time. “The results will shape Roman and Rubin’s future attempts to illuminate dark matter and dark energy while offering other scientists a preview of the types of things they’ll be able to explore using data from the telescopes.”
      This graphic highlights part of a new simulation of what NASA’s Nancy Grace Roman Space Telescope could see when it launches by May 2027. The background spans about 0.11 square degrees (roughly equivalent to half of the area of sky covered by a full Moon), representing less than half the area Roman will see in a single snapshot. The inset zooms in to a region 300 times smaller, showcasing a swath of brilliant synthetic galaxies at Roman’s full resolution. Having such a realistic simulation helps scientists study the physics behind cosmic images –– both synthetic ones like these and future real ones. Researchers will use the observations for many types of science, including testing our understanding of the origin, evolution, and ultimate fate of the universe.C. Hirata and K. Cao (OSU) and NASA’s Goddard Space Flight Center A Cosmic Dress Rehearsal
      For the first time, this simulation factored in the telescopes’ instrument performance, making it the most accurate preview yet of the cosmos as Roman and Rubin will see it once they start observing. Rubin will begin operations in 2025, and NASA’s Roman will launch by May 2027.
      The simulation’s precision is important because scientists will comb through the observatories’ future data in search of tiny features that will help them unravel the biggest mysteries in cosmology.
      Roman and Rubin will both explore dark energy –– the mysterious force thought to be accelerating the universe’s expansion. Since it plays a major role in governing the cosmos, scientists are eager to learn more about it. Simulations like OpenUniverse help them understand signatures that each instrument imprints on the images and iron out data processing methods now so they can decipher future data correctly. Then scientists will be able to make big discoveries even from weak signals.
      “OpenUniverse lets us calibrate our expectations of what we can discover with these telescopes,” said Jim Chiang, a staff scientist at DOE’s SLAC National Accelerator Laboratory in Menlo Park, California, who helped create the simulations. “It gives us a chance to exercise our processing pipelines, better understand our analysis codes, and accurately interpret the results so we can prepare to use the real data right away once it starts coming in.”
      Then they’ll continue using simulations to explore the physics and instrument effects that could reproduce what the observatories see in the universe.
      This photo displays Argonne Leadership Computing Facility’s now-retired Theta supercomputer. Scientists use supercomputers to simulate experiments they can’t conduct in real life, such as creating new universes from scratch. Argonne National Laboratory Telescopic Teamwork
      It took a large and talented team from several organizations to conduct such an immense simulation.
      “Few people in the world are skilled enough to run these simulations,” said Alina Kiessling, a research scientist at NASA’s Jet Propulsion Laboratory (JPL) in Southern California and the principal investigator of OpenUniverse. “This massive undertaking was only possible thanks to the collaboration between the DOE, Argonne, SLAC, and NASA, which pulled all the right resources and experts together.”
      And the project will ramp up further once Roman and Rubin begin observing the universe.
      “We’ll use the observations to make our simulations even more accurate,” Kiessling said. “This will give us greater insight into the evolution of the universe over time and help us better understand the cosmology that ultimately shaped the universe.”
      The Roman and Rubin simulations cover the same patch of the sky, totaling about 0.08 square degrees (roughly equivalent to a third of the area of sky covered by a full Moon). The full simulation to be released later this year will span 70 square degrees, about the sky area covered by 350 full Moons.
      Overlapping them lets scientists learn how to use the best aspects of each telescope –– Rubin’s broader view and Roman’s sharper, deeper vision. The combination will yield better constraints than researchers could glean from either observatory alone.
      “Connecting the simulations like we’ve done lets us make comparisons and see how Roman’s space-based survey will help improve data from Rubin’s ground-based one,” Heitmann said. “We can explore ways to tease out multiple objects that blend together in Rubin’s images and apply those corrections over its broader coverage.”
      This pair of images showcases the same region of sky as simulated by the Vera C. Rubin Observatory (left, processed by the Legacy Survey of Space and Time Dark Energy Science Collaboration) and NASA’s Nancy Grace Roman Space Telescope (right, processed by the Roman High-Latitude Imaging Survey Project Infrastructure Team). Roman will capture deeper and sharper images from space, while Rubin will observe a broader region of the sky from the ground. Because it has to peer through Earth’s atmosphere, Rubin’s images won’t always be sharp enough to distinguish multiple, close sources as separate objects. They’ll appear to blur together, which limits the science researchers can do using the images. But by comparing Rubin and Roman images of the same patch of sky, scientists can explore how to “deblend” objects and implement the adjustments across Rubin’s broader observations. J. Chiang (SLAC), C. Hirata (OSU), and NASA’s Goddard Space Flight Center Scientists can consider modifying each telescope’s observing plans or data processing pipelines to benefit the combined use of both.
      “We made phenomenal strides in simplifying these pipelines and making them usable,” Kiessling said. A partnership with Caltech/IPAC’s IRSA (Infrared Science Archive) makes simulated data accessible now so when researchers access real data in the future, they’ll already be accustomed to the tools. “Now we want people to start working with the simulations to see what improvements we can make and prepare to use the future data as effectively as possible.”
      OpenUniverse, along with other simulation tools being developed by Roman’s Science Operations and Science Support centers, will prepare scientists for the large datasets expected from Roman. The project brings together dozens of experts from NASA’s JPL, DOE’s Argonne, IPAC, and several U.S. universities to coordinate with the Roman Project Infrastructure Teams, SLAC, and the Rubin LSST DESC (Legacy Survey of Space and Time Dark Energy Science Collaboration). The Theta supercomputer was operated by the Argonne Leadership Computing Facility, a DOE Office of Science user facility.
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      The Vera C. Rubin Observatory is a federal project jointly funded by the National Science Foundation and the DOE Office of Science, with early construction funding received from private donations through the LSST Discovery Alliance.
      Download high-resolution video and images from NASA’s Scientific Visualization Studio
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Explore More
      5 min read Millions of Galaxies Emerge in New Simulated Images From NASA’s Roman
      Article 1 year ago 5 min read How NASA’s Roman Space Telescope Will Rewind the Universe
      Article 1 year ago 6 min read How NASA’s Roman Space Telescope Will Chronicle the Active Cosmos
      Article 7 months ago Share
      Details
      Last Updated Jun 12, 2024 Related Terms
      Nancy Grace Roman Space Telescope Astrophysics Dark Energy Dark Matter Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Goddard Space Flight Center High-Tech Computing Missions Science & Research Science-enabling Technology Stars Technology Technology Research The Universe 6 Min Read NASA’s Roman Mission Gets Cosmic ‘Sneak Peek’ From Supercomputers
      This synthetic image is a slice of a much larger simulation depicting the cosmos as NASA's Nancy Grace Roman Space Telescope will see it when it launches by May 2027. Every blob and speck of light represents a distant galaxy (except for the urchin-like spiky dots, which represent foreground stars in our Milky Way galaxy). Credits: C. Hirata and K. Cao (OSU) and NASA’s Goddard Space Flight Center View the full article
  • Check out these Videos

×
×
  • Create New...