Jump to content

NASA Awards Contracts for Aerospace Testing and Facilities Operations


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      High school and collegiate student teams gathered just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama, to participate in the agency’s annual Student Launch competition April 13. Credits: NASA/Charles Beason Over 1,000 students from across the U.S. and Puerto Rico launched high-powered, amateur rockets on April 13, just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama, as part of the agency’s annual Student Launch competition.
      Teams of middle school, high school, college, and university students were tasked to design, build, and launch a rocket and scientific payload to an altitude between 4,000 and 6,000 feet, while making a successful landing and executing a scientific or engineering payload mission.
      “These bright students rise to a nine-month challenge that tests their skills in engineering, design, and teamwork,” said Kevin McGhaw, director of NASA’s Office of STEM Engagement Southeast Region. “They are the Artemis Generation, the future scientists, engineers, and innovators who will lead us into the future of space exploration.”
      NASA announced the University of Notre Dame is the overall winner of the agency’s 2024 Student Launch challenge, followed by Iowa State University, and the University of North Carolina at Charlotte. A complete list challenge winners can be found on the agency’s student launch web page.
      Each year NASA implements a new payload challenge to reflect relevant missions. This year’s payload challenge is inspired by the Artemis missions, which seek to land the first woman and first person of color on the Moon.
      The complete list of award winners are as follows:
      2024 Overall Winners
      First place: University of Notre Dame, Indiana Second place: Iowa State University, Ames Third place: University of North Carolina at Charlotte 3D Printing Award:
      College Level:
      First place: University of Tennessee Chattanooga Middle/High School Level:
      First place: First Baptist Church of Manchester, Manchester, Connecticut Altitude Award
      College Level:
      First place: Iowa State University, Ames Middle/High School Level:
      First place: Morris County 4-H, Califon, New Jersey Best-Looking Rocket Award:
      College Level:
      First place: New York University, Brooklyn, New York Middle/High School Level:
      First place: Notre Dame Academy High School, Los Angeles American Institute of Aeronautics and Astronautics Reusable Launch Vehicle Innovative Payload Award:
      College Level:
      First place: University of Colorado Boulder Second place: Vanderbilt University, Nashville, Tennessee Third place: Carnegie Mellon, Pittsburgh, Pennsylvania Judge’s Choice Award:
      Middle/High School Level:
      First place: Cedar Falls High School, Cedar Falls, Iowa Second place: Young Engineers in Action, LaPalma, California Third place: First Baptist Church of Manchester, Manchester, Connecticut Project Review Award:
      College Level:
      First place: University of Florida, Gainesville AIAA Reusable Launch Vehicle Award:
      College Level:
      First place: University of Florida, Gainesville Second place: University of North Carolina at Charlotte Third place: University of Notre Dame, Indiana AIAA Rookie Award:
      College Level:
      First place: University of Colorado Boulder Safety Award:
      College Level:
      First place: University of Notre Dame, Indiana Second place: University of Florida, Gainesville Third place: University of North Carolina at Charlotte Social Media Award:
      College Level:
      First place: University of Colorado Boulder Middle/High School Level:
      First place: Newark Memorial High School, Newark, California STEM Engagement Award:
      College Level:
      First place: University of Notre Dame, Indiana Second place: University of North Carolina at Charlotte Third place: New York University, Brooklyn, New York Middle/High School Level:
      First place: Notre Dame Academy High School, Los Angeles, California Second place: Cedar Falls High School, Cedar Falls, Iowa Third place: Thomas Jefferson High School for Science and Technology, Alexandria, Virginia Service Academy Award:
      First place: United States Air Force Academy, USAF Academy, Colorado
      Vehicle Design Award:
      Middle/High School Level:
      First place: First Baptist Church of Manchester, Manchester, Connecticut Second place: Explorer Post 1010, Rockville, Maryland Third place: Plantation High School, Plantation, Florida Payload Design Award:
      Middle/High School Level:
      First place: Young Engineers in Action, LaPalma, California Second place: Cedar Falls High School, Cedar Falls, Iowa Third place: Spring Grove Area High School, Spring Grove, Pennsylvania Student Launch is one of NASA’s nine Artemis Student Challenges, activities which connect student ingenuity with NASA’s work returning to the Moon under Artemis in preparation for human exploration of Mars.
      The competition is managed by Marshall’s Office of STEM Engagement (OSTEM). Additional funding and support are provided by NASA’s OSTEM via the Next Gen STEM project, NASA’s Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space, and Bastion Technologies.
      To watch the full virtual awards ceremony, please visit NASA Marshall’s YouTube channel.
      For more information about Student Launch, visit:
      https://www.nasa.gov/stem/studentlaunch/home/index.html
      For more information about other NASA challenges, please visit:
      https://stem.nasa.gov/artemis/
      Taylor Goodwin
      Marshall Space Flight Center, Huntsville, Ala.
      256.544.0034 
      taylor.goodwin@nasa.gov
      Share
      Details
      Last Updated Jun 14, 2024 Related Terms
      Marshall Space Flight Center Explore More
      4 min read NASA Announces New System to Aid Disaster Response
      In early May, widespread flooding and landslides occurred in the Brazilian state of Rio Grande…
      Article 1 day ago 4 min read California Teams Win $1.5 Million in NASA’s Break the Ice Lunar Challenge
      Article 1 day ago 25 min read The Marshall Star for June 12, 2024
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A Terrier-Improved Orion sounding rocket carrying students experiments for the RockOn! mission successfully launched from NASA’s Wallops Flight Facility Aug. 17, 2023 at 6 a.m. EDT.NASA/ Kyle Hoppes More than 50 student and faculty teams are sending experiments into space as part of NASA’s RockOn and RockSat-C student flight programs. The annual student mission, “RockOn,” is scheduled to launch from Wallops Island, Virginia, on a Terrier-Improved Orion sounding rocket Thursday, June 20, with a launch window that opens at 5:30 a.m. EDT.
      An introduction to rocketry for college students
      The RockOn workshop is an introductory flight opportunity for community college and university students. RockOn participants spend a week at NASA’s Wallops Flight Facility, where they are guided through the process of building and launching an experiment aboard a sounding rocket.
      “RockOn provides students and faculty with authentic, hands-on experiences tied to an actual launch into space from a NASA facility,” said Chris Koehler, on contract with NASA as RockOn’s principal investigator. “These experiences are instrumental in the creation of our next STEM workforce.”
      RockOn student experiments are placed into canisters to be integrated into the payload.NASA/ Madison Olson Unique & advanced experiments
      In addition to the RockOn workshop experiments, the rocket will carry student team experiments from six different institutions as part of the RockSat-C program. The RockSat-C experiments are unique to each institution and were created off site.
      RockSat-C “has been an incredible introduction into the world of NASA and how flight missions are built from start to finish,” said TJ Tomaszewski, student lead for the University of Delaware. “The project started as just a flicker of an idea in students’ minds. After countless hours of design, redesign, and coffee, the fact that we finished an experiment capable of going to space and capable of conducting valuable scientific research makes me so proud of my team and so excited for what’s possible next. Everybody dreams about space, and the fact that we’re going to launch still doesn’t feel real.”
      Students participating in the 2024 RockSat-C program were able to see the RockOn rocket in the testing facility at Wallops Flight Facility.NASA/ Berit Bland RockSat-C participants include:
      Temple University, Philadelphia Experiments will utilize X-ray spectrometry, muon detection, and magnetometry to explore the interplay among cosmic phenomena, such as X-rays, cosmic muons, and Earth’s magnetic field, while also quantifying atmospheric methane levels as a function of altitude.
      Southeastern Louisiana University, Hammond The ION experiment aims to measure the plasma density in the ionosphere. This will be achieved by detecting the upper hybrid resonant frequency using an impedance probe mounted on the outside of the rocket and comparing the results to theoretical models. The secondary experiment, known as the ACC experiment, aims to record the rocket’s re-entry dynamics and measure acceleration in the x, y, and z directions.
      Old Dominion University, Norfolk, Virginia The Monarch3D team will redesign and improve upon a pre-existing experiment from the previous year’s team that will print in suborbital space. This project uses a custom-built 3D printer made by students at Old Dominion.
      University of Delaware, Newark Project UDIP-4 will measure the density and temperature of ionospheric electrons as a function of altitude and compare the quality of measurements obtained from different grounding methods. Additionally, the project focuses on developing and testing new CubeSat hardware in preparation for an orbital CubeSat mission named DAPPEr.
      Stevens Institute of Technology, Hoboken, New Jersey The Atmospheric Inert Gas Retrieval project will develop a payload capable of demonstrating supersonic sample collection at predetermined altitudes and investigating the noble gas fractionation and contamination of the acquired samples. In addition, their payload will test the performance of inexpensive vibration damping materials by recording and isolating launch vibrations using 3D-printed components.
      Cubes in Space, Virginia Beach, Virginia The Cubes in Space (CiS) project provides students aged 11 to 18 with a unique opportunity to conduct scientific and engineering experiments in space. CiS gives students hands-on experience and a deeper understanding of scientific and engineering principles, preparing them for more complex STEM studies and research in the future. Students develop and design their unique experiments to fit into clear, rigid plastic payload cubes, each about 1.5 inches on a side. Up to 80 of these unique student experiments are integrated into the nose cone of the rocket.
      Approximately 80 small cubes will be launched as part of the RockOn sounding rocket mission.Courtesy Cubes in Space/Jorge Salazar; used with permission Watch the launch
      The launch window for the mission is 5:30-9:30 a.m. EDT, Thursday June 20, with a backup day of June 21. The Wallops Visitor Center’s launch viewing area will open at 4:30 a.m. A livestream of the mission will begin 15 minutes before launch on the Wallops YouTube channel. Launch updates also are available via the Wallops Facebook page.
      These circular areas show where and when people may see the rocket launch in the sky, depending on cloud cover. The different colored sections indicate the time (in seconds) after liftoff that the sounding rocket may be visible.NASA/ Christian Billie NASA’s Sounding Rocket Program is conducted at the agency’s Wallops Flight Facility, which is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA’s Heliophysics Division manages the sounding rocket program for the agency.

      Share
      Details
      Last Updated Jun 14, 2024 EditorAmy BarraContactAmy Barraamy.l.barra@nasa.govLocationWallops Flight Facility Related Terms
      Wallops Flight Facility For Colleges & Universities Goddard Space Flight Center Heliophysics Division Sounding Rockets Sounding Rockets Program STEM Engagement at NASA Explore More
      4 min read Double Header: NASA Sounding Rockets to Launch Student Experiments
      NASA's Wallops Flight Facility is scheduled to launch two sounding rockets carrying student developed experiments…
      Article 10 months ago 3 min read Sounding Rocket Takes a Second Look at the Sun
      Article 6 years ago 4 min read Big Science Drives Wallops’ Upgrades for NASA Suborbital Missions
      Article 1 month ago View the full article
    • By NASA
      The Virginia Tech team, winners of first place overall in the RASC-AL 2024 competition.NASA Out of 14 finalist teams that encompassed collegiate and university representation from across the globe, the Virginia Polytechnic Institute and State University team with their concept, “Project Draupnir,” in the AI-Powered Self-Replicating Probe theme, took home top prize in NASA’s Revolutionary Aerospace Systems Concepts – Academic Linkage (RASC-AL) competition.  
      The University of Maryland took second place overall for their concept, “SITIS: Subsurface Ice and Terrain In-situ Surveyor,” while South Dakota State University took third place overall with “POSEID-N: Prospecting Observation System for Exploration, Investigation, Discovery, and Navigation,” both in the Large-Scale Lunar Crater Prospector theme.  
      The first and second place overall winning teams will receive a travel stipend to present their work at the 2024 AIAA Accelerating Space Commerce, Exploration, and New Discovery (ASCEND) Conference in Las Vegas, Nevada in July. 
      The University of Maryland team, winners of second place overall in the RASC-AL 2024 competition.NASA In its 23rd year, RASC-AL is one of NASA’s longest running higher education competitions.  
      “It’s an engaging engineering design challenge that fosters collaboration, innovation, and hard work. Finalist teams also enjoy the comradery and networking opportunities at our annual forum in Cocoa Beach, Florida,” said Pat Troutman, program assistant, technical for NASA’s Strategy and Architecture Office. “Each year, the competition grows as more and more students want to contribute to NASA’s mission of improving humanity’s ability to operate on the Moon, Mars and beyond.”  
      The forum is attended by NASA and industry subject matter experts who judge the presentations and offer valuable feedback. New this year, RASC-AL teams based in the United States were encouraged to work with universities from countries that have signed The Artemis Accords – a set of principles designed to guide civil space exploration and use in the 21st century. 
      Finalist teams responded to one of four themes, ranging from developing large-scale lunar surface architectures enabling long-term off-world habitation, to designing new systems that leverage in-situ resources for in-space travel and exploration. 
      The South Dakota State team, winners of third place overall in the RASC-AL 2024 competition.NASA Additional 2024 Forum awards include: 
      Best in Theme: 
      AI-Powered Self-Replicating Probes – an Evolutionary Approach:   Virginia Polytechnic Institute and State University, “Project Draupnir”  Large-Scale Lunar Crater Prospector:  University of Maryland, “SITIS: Subsurface Ice and Terrain In-situ Surveyor”  Sustained Lunar Evolution: University of Puerto Rico, Mayaguez, “Permanent Outpost Lunar Architecture for Research and Innovative Services (POLARIS)”  Long Duration Mars Simulation at the Moon: Massachusetts Institute of Technology (MIT) with École Polytechnique Fédérale de Lausanne (EPFL) and the National Higher French Institute of Aeronautics and Space (ISAE-SUPAERO), “MARTEMIS: Mars Architecture Research using Taguchi Experiments on the Moon with International Solidarity”  Other Awards: 
      Best Prototype: South Dakota State University, “POSEID-N: Prospecting Observation System for Exploration, Investigation, Discovery, and Navigation”  RASC-AL is open to undergraduate and graduate students studying disciplines related to human exploration, including aerospace, bio-medical, electrical, and mechanical engineering, and life, physical, and computer sciences. RASC-AL projects allow students to incorporate their coursework into space exploration objectives in a team environment and help bridge strategic knowledge gaps associated with NASA’s vision. Students have the opportunity to interact with NASA officials and industry experts and develop relationships that could lead to participation in other NASA student research programs.  
      RASC-AL is sponsored by the Strategies and Architectures Office within the Exploration Systems Development Mission Directorate at NASA Headquarters, and by the Space Mission Analysis Branch within the Systems Analysis and Concepts Directorate at NASA Langley. It is administered by the National Institute of Aerospace.  
      For more information about the RASC-AL competition, including complete theme and submission guidelines, visit: http://rascal.nianet.org. 
      Facebook logo @NASA@nasalarc @NASA@NASA_Langley Instagram logo @NASA@NASA_Langley Linkedin logo @NASA@company/nasa-langley-research-center Share
      Details
      Last Updated Jun 13, 2024 Related Terms
      Langley Research Center Space Technology Mission Directorate Explore More
      4 min read California Teams Win $1.5 Million in NASA’s Break the Ice Lunar Challenge
      Article 2 hours ago 2 min read Food Safety Program for Space Has Taken Over on Earth
      System created for Apollo astronaut food has become the global standard for hazard prevention
      Article 3 days ago 5 min read NASA’s Laser Relay System Sends Pet Imagery to, from Space Station
      Article 7 days ago View the full article
    • By NASA
      4 Min Read California Teams Win $1.5 Million in NASA’s Break the Ice Lunar Challenge
      By Savannah Bullard
      After two days of live competitions, two teams from southern California are heading home with a combined $1.5 million from NASA’s Break the Ice Lunar Challenge. 
      The husband-and-wife duo of Terra Engineering, Valerie and Todd Mendenhall, receive the $1 million prize Wednesday, June 12, for winning the final phase of NASA’s Break the Ice Lunar Challenge at Alabama A&M’s Agribition Center in Huntsville, Alabama. With the Terra Engineering team at the awards ceremony are from left Daniel K. Wims, Alabama A&M University president; Joseph Pelfrey, NASA Marshall Space Flight center director; NASA’s Break the Ice Challenge Manager Naveen Vetcha; and Majed El-Dweik, Alabama A&M University’s vice president of research & economic development. NASA/Jonathan Deal Since 2020, competitors from around the world have competed in this challenge with the common goal of inventing robots that can excavate and transport the icy regolith on the Moon. The lunar South Pole is the targeted landing site for crewed Artemis missions, so utilizing all resources in that area, including the ice within the dusty regolith inside the permanently shadowed regions, is vital for the success of a sustained human lunar presence.
      On Earth, the mission architectures developed in this challenge aim to help guide machine design and operation concepts for future mining and excavation operations and equipment for decades.
      “Break the Ice represents a significant milestone in our journey toward sustainable lunar exploration and a future human presence on the Moon,” said Joseph Pelfrey, Center Director of NASA’s Marshall Space Flight Center. “This competition has pushed the boundaries of what is possible by challenging the brightest minds to devise groundbreaking solutions for excavating lunar ice, a crucial resource for future missions. Together, we are forging a future where humanity ventures further into the cosmos than ever before.”
      The final round of the Break the Ice competition featured six finalist teams who succeeded in an earlier phase of the challenge. The competition took place at the Alabama A&M Agribition Center in Huntsville, Alabama, on June 11 and 12, where each team put their diverse solutions to the test in a series of trials, using terrestrial resources like gravity-offloading cranes, concrete slabs, and a rocky track with tricky obstacles to mimic the environment on the Moon.
      Thehusband-and-wife duo of Terra Engineering took home the top prize for their “Irresistible Object” rover. Team lead Todd Mendenhall competed in NASA’s 2007 Regolith Excavation Challenge, facilitated through NASA’s Centennial Challenges, which led him and Valerie Mendenhall to continue the pursuit of solutions for autonomous lunar excavation.
      Starpath Robotics earned the second place prize for its four-wheeled rover that can mine, collect, and haul material during the final phase of NASA’s Break the Ice Lunar Challenge at Alabama A&M’s Agribition Center in Huntsville, Alabama. From left are Matt Kruszynski, Saurav Shroff, Matt Khudari, Alan Hsu, David Aden, Mihir Gondhalekarl, Joshua Huang and Aakash Ramachandran.NASA/Jonathan Deal A small space hardware business, Starpath Robotics, earned the second-place prize for its four-wheeled rover that can mine, collect, and haul material. The team, led by Saurav Shroff and lead engineer Mihir Gondhalekar, developed a robotic mining tool that features a drum barrel scraping mechanism for breaking into the tough lunar surface. This allows the robot to mine material quickly and robustly without sacrificing energy.
      “This challenge has been pivotal in advancing the technologies we need to achieve a sustained human presence on the Moon,” said Kim Krome, the Acting Program Manager for NASA’s Centennial Challenges. “Terra Engineering’s rover, especially, bridged several of the technology gaps that we identified – for instance, being robust and resilient enough to traverse rocky landscapes and survive the harsh conditions of the lunar South Pole.”
      Beyond the $1.5 million in prize funds, three teams will be given the chance to use Marshall Space Flight Center’s thermal vacuum (TVAC) chambers to continue testing and developing their robots. These chambers use thermal vacuum technologies to create a simulated lunar environment, allowing scientists and researchers to build, test, and approve hardware for flight-ready use.
      The following teams performed exceptionally well in the excavation portion of the final competition, earning these invitations to the TVAC facilities:
      Terra Engineering (Gardena, California) Starpath Robotics (Hawthorne, California) Michigan Technological University – Planetary Surface Technology Development Lab (Houghton, Michigan) “We’re looking forward to hosting three of our finalists at our thermal vacuum chamber, where they will get full access to continue testing and developing their technologies in our state-of-the-art facilities,” said Break the Ice Challenge Manager Naveen Vetcha, who supports NASA’s Centennial Challenges through Jacobs Space Exploration Group. “Hopefully, these tests will allow the teams to take their solutions to the next level and open the door for opportunities for years to come.”
      NASA’s Break the Ice Lunar Challenge is a NASA Centennial Challenge led by the agency’s Marshall Space Flight Center, with support from NASA’s Kennedy Space Center in  Florida. Centennial Challenges are part of the Prizes, Challenges, and Crowdsourcing program under NASA’s Space Technology Mission Directorate. Ensemble Consultancy supports challenge competitors. Alabama A&M University, in coordination with NASA, supports the final competitions and winner event for the challenge.
      For more information on Break the Ice, visit:
      nasa.gov/breaktheice
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      jonathan.e.deal@nasa.gov 
      Share
      Details
      Last Updated Jun 13, 2024 LocationMarshall Space Flight Center Related Terms
      General Centennial Challenges Centennial Challenges News Marshall Space Flight Center Prizes, Challenges, and Crowdsourcing Program Explore More
      4 min read Six Finalists Named in NASA’s $3.5 Million Break the Ice Challenge
      Article 6 months ago 4 min read NASA Awards $500,000 in Break the Ice Lunar Challenge
      Article 3 years ago 3 min read Break the Ice Lunar Challenge Phase 2
      Article 2 years ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA logo. Credit: NASA NASA will award funding to nearly 250 small business teams to develop new technologies to address agency priorities, such as carbon neutrality and energy storage for various applications in space and on Earth. The new awards from NASA’s Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program invest in a diverse portfolio of American small businesses and research institutions to support NASA’s future missions.
      About 34% of the companies selected are first-time NASA SBIR/STTR recipients. Each proposal team will receive $150,000 to establish the merit and feasibility of their innovations for a total agency investment of $44.85 million.
      “NASA is proud to continue its commitment to the creation and elevation of technologies that blaze trails in space and on Earth,” said Jenn Gustetic, director of early-stage innovation and partnerships for NASA’s Space Technology Mission Directorate at the agency’s headquarters in Washington.
      The Phase I SBIR contract awards small businesses and lasts for six months, while the Phase I STTR contract awards small businesses in partnership with a research institution and lasts for 13 months. In total, 209 small businesses received SBIR awards, and 39 small businesses and their research institution partners – including eight Minority Serving Institutions – received STTR awards. The complete list of this year’s SBIR and STTR awardees are available online.
      One of the firms working to address carbon neutrality is Exquadrum Inc., a minority-owned small business in Victorville, California. Exquadrum’s proposed technology will contribute to NASA’s effort to make the U.S. carbon neutral by 2050. The proposed technology offers higher energy conversion efficiency with no emission of pollutants. The propulsion system is compact and lightweight compared to current systems. The fuel and its products are safe to handle, and the propulsion system is reliable under extreme weather conditions. The propulsion system has the potential to aid the exploration of planets that have atmospheres like that of Mars.
      “Through our partnership with, and investment in, small businesses and research institutions, NASA continues to forge a crucial path in the development of technologies that have a concerted focus on long-term commercial uses,” said Jason L. Kessler, program executive for NASA’s SBIR/STTR program. “Our ongoing support of diverse innovators from throughout the country will continue to foster an ecosystem that will nurture the intrapreneurial spirit to drive innovation and exciting results.”
      The new SBIR/STTR investments will impact 41 states, including a team with Energized Composite Technologies, in Orlando, Florida, partnering with the University of Central Florida. Together, they will explore using carbon fiber-reinforced thermoplastic composite structural batteries for repurposable space applications, offering a multifunctional solution that integrates structural integrity with energy storage capabilities. The proposed structural battery panels integrate energy storage functionality into the structural components of the spacecraft, minimizing the additional space required for electrical storage while maximizing the available volume for payload. The structural battery panels used for the space vehicle could be repurposed after landing because the thermoplastic-based structural panels can be reshaped for other uses.
      NASA selected Phase I proposals to receive funding by judging their technical merit and responsiveness to known challenges. Based on their progress during Phase I, companies may submit proposals for up to $850,000 in Phase II funding to develop a prototype and subsequent SBIR/STTR Post Phase II opportunities.
      To learn more about NASA’s SBIR/STTR program and apply to future opportunities, visit:
      https://sbir.nasa.gov/
      -end-
      Jasmine Hopkins
      Headquarters, Washington
      202-358-1600
      jasmine.s.hopkins@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...