Jump to content

SpaceX AXIOM 1 - First stage from separation to landing


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      In July 1968, much work still remained to meet the goal President John F. Kennedy set in May 1961, to land a man on the Moon and return him safely to the Earth before the end of the decade. No American astronaut had flown in space since the November 1966 flight of Gemini XII, the delay largely a result of the tragic Apollo 1 fire. Although the Apollo spacecraft had successfully completed several uncrewed test flights, the first crewed mission still lay three months in the future. The delays in getting the Lunar Module (LM) ready for its first flight caused schedule concerns, but also presented an opportunity for a bold step to send the second crewed Apollo mission, the first crewed flight of the Saturn V, on a trip to orbit the Moon. Using an incremental approach, three flights later NASA accomplished President Kennedy’s goal.
      Left: The charred remains of the Apollo 1 spacecraft following the tragic fire that claimed the lives of astronauts Virgil I. “Gus” Grissom, Edward H. White, and Roger B. Chaffee. Middle left: The first launch of the Saturn V rocket on the Apollo 4 mission. Middle right: The first Lunar Module in preparation for the Apollo 5 mission. Right: Splashdown of Apollo 6, the final uncrewed Apollo mission.
      The American human spaceflight program suffered a jarring setback on Jan. 27, 1967, with the deaths of astronauts Virgil I. Grissom, Edward H. White, and Roger B. Chaffee in the Apollo 1 fire. The fire and subsequent Investigation led to wholesale changes to the spacecraft, such as the use of fireproof materials and redesign of the hatch to make it easy to open. The early Block I spacecraft, such as Apollo 1, would now only be used for uncrewed missions, with crews flying only aboard the more advanced Block II spacecraft. The fire and its aftermath also led to management changes. For example, George M. Low replaced Joseph F. Shea as Apollo Spacecraft Program Manager. The first Apollo mission after the fire, the uncrewed Apollo 4 in November 1967, included the first launch of the Saturn V Moon rocket as well as a 9-hour flight of a Block I Command and Service Module (CSM). Apollo 5 in January 1968 conducted the first uncrewed test of the LM, and despite a few anomalies, managers considered it successful enough that they canceled a second uncrewed flight. The April 1968 flight of Apollo 6, planned as a near-repeat of Apollo 4, encountered several significant anomalies such as first stage POGO, or severe vibrations, and the failure of the third stage to restart, leading to an alternate mission scenario. Engineers devised a solution to the POGO problem and managers decided that the third flight of the Saturn V would carry a crew.
      Left: Apollo 7 astronauts R. Walter Cunningham, left, Donn F. Eisele, and Walter M. Schirra participate in water egress training. Middle: Workers stack the Apollo 7 spacecraft on its Saturn IB rocket at Launch Pad 34. Right: Schirra, left, Cunningham, and Eisele stand outside the spacecraft simulator.
      As of July 1968, NASA’s plan called for two crewed Apollo flights in 1968 and up to five in 1969 to achieve the first lunar landing to meet President Kennedy’s deadline, with each mission incrementally building on the success of the previous ones. The first mission, Apollo 7, would return American astronauts to space following a 23-month hiatus. Planned for October 1968, the crew of Walter M. Schirra, Donn F. Eisele, and R. Walter Cunningham would launch atop a Saturn IB rocket and conduct a shakedown flight of the Block II CSM in Earth orbit, including testing the Service Propulsion System engine, critical on later lunar missions for getting into and out of lunar orbit. The flight plan remained open-ended, but managers expected to complete a full-duration 11-day mission, ending with a splashdown in the Atlantic Ocean. Preparations for Apollo 7 proceeded well during the summer of 1968. Workers had stacked the two-stage Saturn IB rocket on Launch Pad 34 back in April. In KSC’s Manned Spacecraft Operations Building (MSOB), Schirra, Eisele, and Cunningham completed altitude chamber tests of their spacecraft, CSM-101, on July 26 followed by their backups three days later. Workers trucked the spacecraft to the launch pad on Aug. 9 for mating with the rocket. Among major milestones, Schirra, Eisele, and Cunningham completed water egress training in the Gulf of Mexico on Aug. 5, in addition to spending time in the spacecraft simulators at KSC and at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston.
      Left: The original Apollo 8 crew of Russell L. Schweickart, left, David R. Scott, and James A. McDivitt during training in June 1968. Middle: Lunar Module-3 arrives at NASA’s Kennedy Space Center (KSC) in Florida in June 1968. Right: In July 1968, workers in KSC’s Vehicle Assembly Building stack the Saturn V rocket for the Apollo 8 mission.
      The second flight, targeting a December 1968 launch, would feature the first crewed launch of the Saturn V rocket. The Apollo 8 crew of James A. McDivitt, David R. Scott, and Russell L. Schweickart would conduct the first crewed test of the LM in the relative safety of low Earth orbit. McDivitt and Schweickart would fly the LM on its independent mission, including separating the ascent stage from the descent stage to simulate a takeoff from the Moon, while Scott remained in the CSM. After redocking, Schweickart would conduct a spacewalk to practice an external transfer between the two vehicles. Workers completed stacking the three-stage Saturn V rocket (SA-503) in KSC’s Vehicle Assembly Building (VAB) on Aug. 14. The first component of the spacecraft, LM-3, arrived at KSC on June 9, while CSM-103, arrived on Aug. 12. Workers in the MSOB began to prepare both spacecraft for flight.
      Left: The original Apollo 9 crew of William A. Anders, left, Michael Collins, and Frank Borman during training in March 1968. Middle: Lunar Module-3 during preflight processing at NASA’s Kennedy Space Center (KSC) in Florida in August 1968. Right: Following the revision of the mission plans for Apollo 8 and 9 and crew changes, the Apollo 8 crew of James A. Lovell, Anders, and Borman stand before their Saturn V rocket as it rolls out of KSC’s Vehicle Assembly Building in October 1968.
      The third flight, planned for early 1969, and flown by Frank Borman, Michael Collins, and William A. Anders, would essentially repeat the Apollo 8 mission, but at the end would fire the SPS engine to raise the high point of their orbit to 4,600 miles and then simulate a reentry at lunar return velocity to test the spacecraft’s heat shield. On July 23, Collins underwent surgery for a bone spur in his neck, and on August 8, NASA announced that James A. Lovell from the backup crew would take his place. Later missions in 1969 would progress to sending the CSM and LM combination to lunar orbit, leading to the first landing before the end of the year. Construction of the rocket and spacecraft components for these future missions continued at various contractor facilities around the country.
      Left: In Mission Control during the Apollo 6 mission, Director of Flight Crew Operations Christopher C. Kraft, left, Director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston Robert R. Gilruth, and Apollo Spacecraft Program Manager George M. Low. Middle left: Chief of Flight Crew Operations Donald K. “Deke” Slayton. Middle right: Director of NASA’s Kennedy Space Center in Florida Kurt H. Debus. Right: Director of NASA’s Marshall Space Flight Center in Huntsville, Alabama.
      Challenges to this plan began to arise in June 1968. Managers’ biggest concern centered around the readiness of LM-3. After its delivery to KSC on June 9, managers realized the vehicle needed much more work than anticipated and it would not meet the planned December Apollo 8 launch date. Best estimates put its flight readiness no earlier than February 1969. That kind of delay would jeopardize meeting President Kennedy’s fast-approaching deadline. To complicate matters, intelligence reports indicated that the Soviets were close to sending cosmonauts on a trip around the Moon, possibly before the end of the year, and also preparing to test a Saturn V-class rocket for a Moon landing mission.
      Apollo Spacecraft Program Manager Low formulated a plan both audacious and risky. Without a LM, an Earth orbital Apollo 8 mission would simply repeat Apollo 7’s and not advance the program very much. By sending the CSM on a mission around the Moon, or even to orbit the Moon, NASA would gain valuable experience in navigation and communications at lunar distances. To seek management support for his plan, on Aug. 9 Low met with MSC Director Robert R. Gilruth, who supported the proposal. They called in Christopher C. Kraft, director of flight operations, for his opinion. Two days earlier, Low had asked Kraft to assess the feasibility of a lunar orbit mission for Apollo 8, and Kraft deemed it achievable from a ground control and spacecraft computer standpoint. Chief of Flight Crew Operations Donald K. “Deke” Slayton joined the discussion, and all agreed to seek support for the plan from the directors of KSC and of NASA’s Marshall Space Flight Center (MSFC) in Huntsville, Alabama, as well as NASA Headquarters (HQ) in Washington, D.C. That afternoon, the four flew to Huntsville and met with MSFC Director Wernher von Braun, KSC Director Kurt H. Debus, and HQ Apollo Program Director Samuel C. Phillips. By the end of the meeting, the group identified no insurmountable technical obstacles to the lunar mission plan, with the qualification that the Apollo 7 mission in October concluded successfully. Von Braun had confidence that the Saturn V would perform safely, and Debus believed KSC could support a December launch.
      Slayton called Borman, who was with Lovell and Anders conducting tests with their spacecraft in Downey, California. He ordered Borman to immediately fly to Houston, where he offered him command of the new circumlunar Apollo 8 mission, which Borman accepted. His crew would swap missions with McDivitt’s, who agreed to fly an Earth orbital test of the LM in February 1969, putting that crew’s greater experience with the LM to good use. The training challenge fell on Borman’s crew, who now had just four months to train for a flight around the Moon.
      Left: Apollo Program Director Samuel C. Phillips. Middle left: Associate Administrator for Manned Space Flight George E. Mueller. Middle right: Deputy Administrator Thomas O. Paine. Right: Administrator James E. Webb.
      On Aug. 14, representatives from MSC, MSFC, and KSC attended a meeting in Washington with NASA Deputy Administrator Thomas O. Paine and Apollo Program Director Phillips, the senior Headquarters officials present as NASA Administrator James E. Webb and Associate Administrator for Manned Space Flight George E. Mueller attended a conference in Vienna. The group discussed Low’s proposal and agreed on the technical feasibility of accomplishing a circumlunar flight with Apollo 8 in December. During the discussion, Mueller happened to call from Vienna and when they presented him with the proposal, he was at first reticent, especially since NASA had yet to fly Apollo 7. He requested more information and more time to consider the proposal so he could properly brief Webb. Paine then polled each center director for his overall assessment. Von Braun, who designed the Saturn V rocket, stated that whether it went to the Moon or stayed in Earth orbit didn’t matter too much. Debus stated that KSC could support a Saturn V launch in December – as noted above, his team was already processing both the rocket and the spacecraft. Gilruth agreed that the proposal represented a key step in achieving President Kennedy’s goal, and emphasized that the mission should not just loop around the Moon but actually enter orbit. Following additional discussions after Webb’s return from Vienna, he agreed to the plan, but would not make a formal decision until after a successful Apollo 7 flight in October. NASA kept the lunar orbit plan quiet even as the crews began training for their respective new missions. An announcement on Aug. 19 merely stated that Apollo 8 would not carry a LM, as the agency continued to assess various mission objectives. Ultimately, the plan required President Lyndon B. Johnson’s approval.
      Left: Astronaut Neil A. Armstrong ejects just moments before his Lunar Landing Research Vehicle crashed. Middle left: Pilot Gerald P. Gibbons, left, and astronaut James B. Irwin prepare to enter an altitude chamber for one of the Lunar Module Test Article-8 (LTA-8) vacuum tests. Middle right: Astronauts Joe H. Engle, left, Vance D. Brand, and Joseph P. Kerwin preparing for the 2TV-1 altitude test. Right: One of the final Apollo parachute tests.
      As those discussions took place, work around the country continued to prepare for the first lunar landing, not without some setbacks. On May 8, astronaut Neil A. Armstrongejected just in the nick of time as the Lunar Landing Research Vehicle (LLRV) he was piloting went out of control and crashed. Managers suspended flights of the LLRV and its successor, the Lunar Landing Training Vehicle (LLTV), until Oct. 3. Astronauts used the LLRV and LLTV to train for the final few hundred feet of the descent to the Moon’s surface. On May 27, astronaut James B. Irwin and pilot Gerald P. Gibbons began a series of altitude tests in Chamber B of the Space Environment Simulation Laboratory (SESL) at MSC. The tests, using the LM Test Article-8 (LTA-8), evaluated the pressure integrity of the LM as well as the new spacesuits designed for the Apollo program. The first series of LTA-8 tests supported the Earth-orbital flight of LM-3 on Apollo 9 while a second series in October and November supported the LM-5 flight of Apollo 11, the first lunar landing mission. In June, using SESL’s Chamber A, astronauts Joseph P. Kerwin, Vance D. Brand, and Joe H. Engle completed an eight-day thermal vacuum test using the Apollo 2TV-1 spacecraft to certify the vehicle for Apollo 7. A second test in September certified the vehicle for lunar missions. July 3 marked the final qualification drop test of the Apollo parachute system, a series begun five years earlier. The tests qualified the parachutes for Apollo 7.
      History records that Apollo 11 accomplished the first human landing on the Moon in July 1969. It is remarkable to think that just one year earlier, with the agency still recovering from the Apollo 1 fire, NASA had not yet flown any astronauts aboard an Apollo spacecraft. And further, the agency took the bold step to plan for a lunar orbital mission on just the second crewed mission. With a cadence of a crewed Apollo flight every two months between October 1968 and July 1969, NASA accomplished President Kennedy’s goal of landing a man on the Moon and returning him safely to the Earth.
      John Uri
      NASA Johnson Space Center
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A graphic representation of a laser communications relay between the International Space Station, the Laser Communications Relay Demonstration spacecraft, and the Earth.Credit: NASA/Dave Ryan A team at NASA’s Glenn Research Center in Cleveland streamed 4K video footage from an aircraft to the International Space Station and back for the first time using optical, or laser, communications. The feat was part of a series of tests on new technology that could provide live video coverage of astronauts on the Moon during the Artemis missions.

      Historically, NASA has relied on radio waves to send information to and from space. Laser communications use infrared light to transmit 10 to 100 times more data faster than radio frequency systems.

      From left to right, Kurt Blankenship, research aircraft pilot, Adam Wroblewski, instrument operator, and Shaun McKeehan, High-Rate Delay Tolerant Networking software developer, wait outside the PC-12 aircraft, preparing to take flight. Credit: NASA/Sara Lowthian-Hanna Working with the Air Force Research Laboratory and NASA’s Small Business Innovation Research program, Glenn engineers temporarily installed a portable laser terminal on the belly of a Pilatus PC-12 aircraft. They then flew over Lake Erie sending data from the aircraft to an optical ground station in Cleveland. From there, it was sent over an Earth-based network to NASA’s White Sands Test Facility in Las Cruces, New Mexico, where scientists used infrared light signals to send the data.

      The signals traveled 22,000 miles away from Earth to NASA’s Laser Communications Relay Demonstration (LCRD), an orbiting experimental platform. The LCRD then relayed the signals to the ILLUMA-T (Integrated LCRD LEO User Modem and Amplifier Terminal) payload mounted on the orbiting laboratory, which then sent data back to Earth. During the experiments, High-Rate Delay Tolerant Networking (HDTN), a new system developed at Glenn, helped the signal penetrate cloud coverage more effectively.

      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      4K video footage was routed from the PC-12 aircraft to an optical ground station in Cleveland. From there, it was sent over an Earth-based network to NASA’s White Sands Test Facility in Las Cruces, New Mexico. The signals were then sent to NASA’s Laser Communications Relay Demonstration spacecraft and relayed to the ILLUMA-T payload on the International Space Station. Video Credit: NASA/Morgan Johnson “These experiments are a tremendous accomplishment,” said Dr. Daniel Raible, principal investigator for the HDTN project at Glenn. “We can now build upon the success of streaming 4K HD videos to and from the space station to provide future capabilities, like HD videoconferencing, for our Artemis astronauts, which will be important for crew health and activity coordination.”

      Mechanical Engineer Jeff Pollack finalizes his design for the integration of the laser communications terminal into the PC-12 research aircraft.Credit: NASA/Sara Lowthian-Hanna After each flight test, the team continuously improved the functionality of their technology. Aeronautics testing of space technology often finds issues more effectively than ground testing, while remaining more cost-effective than space testing. Proving success in a simulated space environment is key to moving new technology from a laboratory into the production phase.

      “Teams at Glenn ensure new ideas are not stuck in a lab, but actually flown in the relevant environment to ensure this technology can be matured to improve the lives of all of us,” said James Demers, chief of aircraft operations at Glenn.

      The flights were part of an agency initiative to stream high-bandwidth video and other data from deep space, enabling future human missions beyond low Earth orbit. As NASA continues to develop advanced science instruments to capture high-definition data on the Moon and beyond, the agency’s Space Communications and Navigation, or SCaN, program embraces laser communications to send large amounts of information back to Earth.
      The optical system temporarily installed on the belly of the PC-12 aircraft has proven to be a very reliable high-performance system to communicate with prototype flight instrumentation and evaluate emerging technologies to enhance high-bandwidth systems.Credit: NASA/Sara Lowthian-Hanna While the ILLUMA-T payload is no longer installed on the space station, researchers will continue to test 4K video streaming capabilities from the PC-12 aircraft through the remainder of July, with the goal of developing the technologies needed to stream humanity’s return to the lunar surface through Artemis.
      Explore More
      10 min read LIVE: NASA is with you from Oshkosh
      Article 1 hour ago 5 min read NASA’s 21st Northrop Grumman Mission Launches Scientific Studies to Station
      Article 1 day ago 5 min read Ground Antenna Trio to Give NASA’s Artemis Campaign ‘LEGS’ to Stand On
      Article 2 days ago View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA astronaut Kate Rubins uses a hammer to get a drive tube into the ground to collect a pristine soil sample during a nighttime simulated moonwalk in the San Francisco Volcanic Field in Northern Arizona on May 16, 2024. Surviving and operating through the lunar night was identified as a top-ranked 2024 Civil Space Challenge, and tests such as these help NASA astronauts and engineers practice end-to-end lunar operations. NASA/Josh Valcarcel This spring, NASA published a document overviewing almost 200 technology areas requiring further development to meet future exploration, science, and other mission needs – and asked the aerospace community to rate their importance. The goal was to better integrate the community’s most pervasive technical challenges, or shortfalls, to help guide NASA’s space technology development and investments.
      Today, NASA’s Space Technology Mission Directorate (STMD) released the 2024 Civil Space Shortfall Ranking document, integrating inputs from NASA mission directorates and centers, small and large industry organizations, government agencies, academia, and other interested individuals. STMD will use the inaugural list and annual updates as one of many factors to guide its technology development projects and investments.
      “Identifying consensus among challenges across the aerospace industry will help us find solutions, together,” said NASA Associate Administrator Jim Free. “This is the groundwork for strengthening the nation’s technological capabilities to pave the way for new discoveries, economic opportunities, and scientific breakthroughs that benefit humanity.”
      The integrated results show strong stakeholder agreement among the 30 most important shortfalls. At the top of the list is surviving and operating through the lunar night, when significant and sustained temperature drops make it difficult to run science experiments, rovers, habitats, and more. Solution technologies could include new power, thermal management, and motor systems. Second and third on the integrated list are the need for high-power energy generation on the Moon and Mars and high-performance spaceflight computing.
      The inputs received are already igniting meaningful conversations to help us and our stakeholders make smarter decisions. We will refine the process and results annually to ensure we maintain a useful approach and tool that fosters resilience in our space technology endeavors.”
      Michelle Munk
      Acting Chief Architect for STMD
      Highly rated capability areas in the top 20 included advanced habitation systems, autonomous systems and robotics, communications and navigation, power, avionics, and nuclear propulsion. Beyond the top quartile, stakeholder shortfall scores varied, likely aligning with their interests and expertise. With many shortfalls being interdependent, it emphasizes the need to make strategic investments across many areas to maintain U.S. leadership in space technology and drive economic growth.
      STMD is evaluating its current technology development efforts against the integrated list to identify potential adjustments within its portfolio.
      “This effort is an excellent example of our directorates working together to assess future architecture needs that will enable exploration and science for decades to come,” said Nujoud Merancy, deputy associate administrator for the Strategy and Architecture Office within NASA’s Exploration Systems Development Mission Directorate.
      The 2024 results are based on 1,231 total responses, including 769 internal and 462 external responses. Twenty were consolidated responses, representing multiple individuals from the same organization. Once average shortfall scores were calculated for each organization, STMD grouped, totaled, and averaged scores for nine stakeholder groups and then applied pre-determined weights to each to create the overall ranking. In the document, NASA also published the ranked results for each stakeholder group based on the 2024 feedback.
      The rankings are based on the numerical scores received and not responses to the open-ended questions. NASA anticipates the qualitative feedback will uncover additional insights and more.
      NASA will host a webinar to overview the ranking process and results on July 26, 2024, at 2 p.m. EDT.
      Register for the Stakeholder Webinar “Communicating our most pressing technology challenges is a great way to tap into the abilities across all communities to provide solutions to critical problems,” said Dr. Carolyn Mercer, chief technologist for NASA’s Science Mission Directorate.
      To learn more about the inaugural civil space shortfall feedback opportunity and results as well as monitor future feedback opportunities, visit:
      www.nasa.gov/civilspaceshortfalls

      View the full article
    • By NASA
      NASA Astronaut Eileen Collins, STS-93 commander, looks through a checklist on the space shuttle Columbia’s middeck in this July 1999 image. Collins was the first female shuttle commander.
      Collins graduated in 1979 from Air Force Undergraduate Pilot Training at Vance AFB, Oklahoma, where she was a T-38 instructor pilot until 1982. She continued her career as an instructor pilot of different aircraft until 1989. She was selected for the astronaut program while attending the Air Force Test Pilot School at Edwards AFB, California, which she graduated from in 1990. Collins became an astronaut in 1991 and over the course of four spaceflights, logged over 872 hours in space. She retired from NASA in May 2006.
      Image credit: NASA
      View the full article
    • By NASA
      5 Min Read Eileen Collins Broke Barriers as America’s First Female Space Shuttle Commander
      Astronauts Eileen M. Collins, mission commander and Jeffrey S. Ashby, pilot, peruse checklists on Columbia's middeck during the STS-93 mission. Credits: NASA At the end of February 1998, Johnson Space Center Deputy Director James D. Wetherbee called Astronaut Eileen Collins to his office in Building 1. He told her she had been assigned to command STS-93 and went with her to speak with Center Director George W.S. Abbey who informed her that she would be going to the White House the following week.
      Selecting a female commander to fly in space was a monumental decision, something the space agency recognized when they alerted the president of the United States. First Lady Hillary Clinton wanted to publicly announce the flight to the American people along with her husband President William J. Clinton and NASA Administrator Daniel S. Goldin.
      President William Jefferson Clinton and First Lady Hillary Rodham Clinton with Eileen Collins in the Oval Office.Sharon Farmer and White House Photograph Office At that event, on March 5, 1998, the First Lady noted what a change it would be to have a female in the commander’s seat. Referencing Neil A. Armstrong’s first words on the Moon, Clinton proclaimed, “Collins will take one big step forward for women and one giant leap for humanity.” Collins, a military test pilot and shuttle astronaut, was about to break one of the last remaining barriers for women at NASA by being assigned a position previously filled by men only. Clinton went on to reflect on her own experience with the space agency when she explained how in 1962, at the age of 14, she had written to NASA and asked about the qualifications to become an astronaut. NASA responded that women were not being considered to fly space missions. “Well, times have certainly changed,” she said wryly.
      Eileen Collins’ assignment as the first female shuttle commander was front page news in the March 13, 1998 issue of Johnson Space Center’s Space News Roundup.NASA The same year Hillary Clinton inquired about the astronaut corps, a special subcommittee of the U.S. House of Representatives Committee on Science and Astronautics held hearings on the issue of sexual discrimination in the selection of astronauts. Astronaut John H. Glenn, who had flown that February in 1962, justified women’s exclusion from the corps. “I think this gets back to the way our social order is organized really. It is just a fact. The men go off and fight the wars and fly the airplanes and come back and help design and build and test them. The fact that women are not in this field is a fact of our social order. It may be undesirable.” Attitudes about women’s place in society, not just at NASA, were stubbornly hard to break. It would be 16 years before the agency selected its first class of astronauts that included women.
      Astronaut Eileen M. Collins looks over a checklist at the commander’s station on the forward flight deck of the space shuttle Columbia on July 23, 1999, the first day of the mission.  The most important event of this day was the deployment of the Chandra X-Ray Observatory.NASA By 1998, views about women’s roles had changed substantially, as demonstrated by the naming of the first female shuttle commander. The agency even commissioned a song for the occasion: “Beyond the Sky,” by singer-songwriter Judy Collins. NASA dedicated the historic mission’s launch to America’s female aviation pioneers from the Ninety-Nines—an international organization of women pilots—to the Women Airforce Service Pilots (WASPs), women who ferried aircraft for the military during World War II. Collins also extended an invitation to the women who had participated in Randy Lovelace’s Woman in Space Program, where women went through the same medical and psychological tests as the Mercury 7 astronauts; the press commonly refers to these women as the Mercury 13. (Commander Collins had thanked both the WASPs and the Mercury 13 for paving the way and inspiring her career in aviation and spaceflight in her White House speech.)
      In a way, it's like my dream come true.
      Betty Skelton Frankman
      Pioneering Woman Aviator
      In a group interview with several of the WASPs in Florida, just before launch, Mary Anna “Marty” Martin Wyall explained why they came. “Eileen Collins was one of those women that has always looked at us as being her mentors, and we just think she’s great. That’s why we want to come see her blast off.” Betty Skelton Frankman expressed just how proud she was of Collins, and how NASA’s first female commander would be fulfilling her dream to fly in space. “In a way,” she said, “it’s like my dream come true.” In the ‘60s it was not possible for a woman to fly in space because none met the requirements as laid out by NASA. But by the end of the twentieth century, women had been in the Astronaut Office for 20 years, and opportunities for women had grown as women were selected as pilot astronauts. NASA named its second and only other female space shuttle commander, Pamela A. Melroy, to STS-120, and Peggy A. Whitson went on to command the International Space Station. Melroy and Whitson shook hands in space, when their missions coincided, for another historic first—two women commanding space missions at the same time.
      Twenty-five years ago, Eileen Collins’ command broke down barriers in human spaceflight. As the First Lady predicted, her selection led to other opportunities for women astronauts. More women continue to command spaceflight missions, including Expedition 65 Commander Shannon Walker and Expedition 68 Commander Samantha Cristoforetti. More importantly, Collins became a role model for young people interested in aviation, engineering, math, science, and technology. Her career demonstrated that there were no limits if you worked hard and pursued your passion.
      Learn More About Eileen Collins Share
      Details
      Last Updated Jul 22, 2024 Related Terms
      Eileen M. Collins Former Astronauts NASA History STS-93 Women at NASA Women's History Month Explore More
      5 min read Sally Ride Remembered as an Inspiration to Others
      Article 1 year ago 6 min read The Class of 1978 and the FLATs
      Article 11 years ago 6 min read Lovelace’s Woman in Space Program
      Article 20 years ago Keep Exploring Discover More Topics From NASA
      NASA History
      Women at NASA
      Space Shuttle
      Former Astronauts
      View the full article
  • Check out these Videos

×
×
  • Create New...