Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:01:38 On 11 June, engineers at OHB’s facilities in Germany joined together the two main parts of ESA’s Plato mission. 
      They used a special crane to lift Plato’s payload module, housing its 26 ultra-sensitive cameras, into the air and carefully line it up over the service module. The supporting service module contains everything else that the spacecraft needs to function, including subsystems for power, propulsion and communication with Earth. 
      With millimetre-level precision, the engineers gently lowered the payload module into place. Once perfectly positioned, the team tested the electrical connections. 
      Finally, they securely closed a panel that connects the payload module to the service module both physically and electronically (seen ‘hanging’ horizontally above the service module in this image). This panel, which opens and closes with hinges, also contains the electronics to process data from the cameras. 
      Now in one piece, Plato is one step closer to beginning its hunt for Earth-like planets.  
      In the coming weeks, the spacecraft will undergo tests to ensure its cameras and data processing systems still work perfectly. 
      Then it will be driven from OHB’s cleanrooms to ESA’s technical heart (ESTEC) in the Netherlands. At ESTEC, engineers will complete the spacecraft by fitting it with a combined sunshield and solar panel module. 
      Following a series of essential tests to confirm that Plato is fit for launch and ready to work in space, it will be shipped to Europe’s launch site in French Guiana. 
      The mission is scheduled to launch on an Ariane 6 in December 2026. 
      Access the related broadcast quality video footage. 
      ESA’s Plato (PLAnetary Transits and Oscillations of stars) will use 26 cameras to study terrestrial exoplanets in orbits up to the habitable zone of Sun-like stars.  
      Plato's scientific instrumentation, consisting of the cameras and electronic units, is provided through a collaboration between ESA and the Plato Mission Consortium. This Consortium is composed of various European research centres, institutes and industries, led by the German Aerospace Center (DLR). The spacecraft is being built and assembled by the industrial Plato Core Team led by OHB together with Thales Alenia Space and Beyond Gravity. 
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Since childhood, Derrick Bailey always had an early fascination with aeronautics. Military fighter jet pilots were his childhood heroes, and he dreamed of joining the aerospace industry. This passion was a springboard into his 17-year career at NASA, where Bailey plays an important role in enabling successful rocket launches.

      Bailey is the Launch Vehicle Certification Manager in the Launch Services Program (LSP) within the Space Operations Mission Directorate. In this role, he helps NASA outline the agency’s risk classifications of new rockets from emerging and established space companies.

      “Within my role, I formulate a series of technical and process assessments for NASA LSP’s technical team to understand how companies operate, how vehicles are designed and qualified, and how they perform in flight,” Bailey said.

      Beyond technical proficiency and readiness, a successful rocket launch relies on establishing a strong foundational relationship between NASA and the commercial companies involved. Bailey and his team ensure effective communication with these companies to provide the guidance, data, and analysis necessary to support them in overcoming challenges.

      “We work diligently to build trusting relationships with commercial companies and demonstrate the value in partnering with our team,” Bailey said.

      Bailey credits a stroke of fate that landed him at the agency. During his senior year at Georgia Tech, where he was pursuing a degree in aerospace engineering, Bailey almost walked past the NASA tent at a career fair. However, he decided to grab a NASA sticker and strike up a conversation, which quickly turned into an impromptu interview. He walked away that day with a job offer to work on the now-retired Space Shuttle Program at the agency’s Kennedy Space Center in Florida.

      “I never imagined working at NASA,” Bailey said. “Looking back, it’s unbelievable that a chance encounter resulted in securing a job that has turned into an incredible career.”

      Thinking about the future, Bailey is excited about new opportunities in the commercial space industry. Bailey sees NASA as a crucial advisor and mentor for commercial sector while using industry capabilities to provide more cost-effective access to space.

      Derrick Bailey, launch vehicle certification manager for NASA’s Launch Services Program
      “We are the enablers,” Bailey said of his role in the directorate. “It is our responsibility to provide the best opportunity for future explorers to begin their journey of discovery in deep space and beyond.”

      Outside of work, Bailey enjoys spending time with his family, especially his two sons, who keep him busy with trips to the baseball diamond and homework sessions. Bailey also enjoys hands-on activities, like working on cars, off-road vehicles, and house projects – hobbies he picked up from his mechanically inclined father. Additionally, at the beginning of 2025, his wife accepted a program specialist position with LSP, an exciting development for the entire Bailey family.

      “One of my wife’s major observations early on in my career was how much my colleagues genuinely care about one another and empower people to make decisions,” Bailey explained. “These are the things that make NASA the number one place to work in the government.”
      NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the hub of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support.

      To learn more about NASA’s Space Operation Mission Directorate, visit: 
      https://www.nasa.gov/directorates/space-operations
      Share
      Details
      Last Updated Jun 26, 2025 Related Terms
      Space Operations Mission Directorate People of Space Operations Explore More
      4 min read NASA to Gather In-Flight Imagery of Commercial Test Capsule Re-Entry
      Article 1 week ago 4 min read Meet the Space Ops Team: Christine Braden
      Article 1 month ago 4 min read NASA Enables SPHEREx Data Return Through Commercial Partnership
      Article 2 months ago View the full article
    • By NASA
      Editor’s note: This interview was conducted in October 2023. 
      As the International Space Station approaches 25 years of continuous human presence on Nov. 2, 2025, it is a meaningful moment to recognize those who have been there since the beginning—sharing the remarkable achievements of human spaceflight with the world.   
      If you have ever witnessed the live coverage of a NASA spacewalk or launch, then you know the captivating voice of celestial storyteller Rob Navias. Navias effortlessly blends expertise, enthusiasm, and profound insight into every mission. 
      Rob Navias on console in the Mission Control Center covering an Extravehicular Activity aboard the International Space Station. NASA/Bill Stafford  I relay the facts and data with history in mind. You need to maintain a sense of history if you're going to be able to tell the contemporary story properly.
      Rob Navias
      Public Affairs Officer and Mission Commentator  
      Navias works within the Office of Public Affairs on mission operations and television in NASA Johnson Space Center’s Office of Communications, leading public affairs activities involving launches and landings of U.S. astronauts and international partner crew members. He is iconically known as the voice of NASA.   
      He has been a part of some of the most impactful moments in space exploration history, communicating the facts in real time with unmatched clarity. He covered every shuttle mission from the maiden launch of Columbia in April 1981 to Atlantis’ final voyage in July 2011. Navias is known for connecting others accurately and honestly to key moments in time.  
      Navias’ extraordinary contributions to space communications garnered him the 2017 Space Communicator Award from the Rotary National Award for Space Achievement Foundation. This prestigious accolade is presented to individuals or teams who have made remarkable contributions to public understanding and appreciation of space exploration. Navias’ unwavering dedication to NASA was recognized with the 2023 Length of Federal Service Award, commemorating his 30-year commitment to the agency.    
      His legacy continued on screen in Cosmic Dawn, the NASA documentary exploring the James Webb Space Telescope’s incredible journey. Featured for his role as the launch commentator during Webb’s Christmas Day 2021 liftoff, Navias brought historical context and lived experience to one of NASA’s most ambitious missions.
      As long as we can maintain a shared vision and curiosity, all nations can go a long way up to the universe.
      Rob Navias
      Public Affairs Officer and Mission Commentator  
      He began his broadcast career as a correspondent for networks covering the Space Shuttle Program. Before joining NASA in 1993, Navias had a 25-year career in broadcast journalism where he reported the voyage of Pioneer 11, a robotic space probe that studied the asteroid belt and the rings of Saturn, as well as the test flights for the Space Shuttle Enterprise at Edwards Air Force Base in California and the Voyager missions from NASA’s Jet Propulsion Laboratory in Southern California. 
      Navias also covered the Apollo-Soyuz Test Project as a broadcast journalist. That first international human spaceflight showed the world there was a way for nations to work together peacefully for a common goal, Navias stated.  
      “Once the commitment was made to fund the construction of an international space station, it broadened the agency’s scope to work multiple programs that could be a stepping stone beyond low Earth orbit,” Navias said.     
      Rob Navias (left), accompanied by Phil Engelauf and John Shannon, during an STS-114 Flight Director press briefing.NASA I think the greatest legacy of the International Space Station will ultimately be the diplomatic oasis it has provided in orbit for exploration and scientific research.
      ROB Navias
      Public Affairs Officer and Mission Commentator  
      Navias explained that during his time at NASA, he has learned a lot about himself. “The day you stop absorbing information, the day that you grow tired of learning new things is the day you need to walk away,” he said. “The challenge of spaceflight keeps me here at NASA.”
      Navias underscored the importance of nurturing and retaining the agency’s brilliant workforce who have shaped the pioneering mindset of human space exploration. He believes blending talent, resources, and industry expertise is the key to returning to the Moon and going to Mars. This collaborative mindset has not only resulted in establishing a laboratory in low Earth orbit but also paved the way for future missions.    
      View the full article
    • By NASA
      A NASA-sponsored team is creating a new approach to measure magnetic fields by developing a new system that can both take scientific measurements and provide spacecraft attitude control functions. This new system is small, lightweight, and can be accommodated onboard the spacecraft, eliminating the need for the boom structure that is typically required to measure Earth’s magnetic field, thus allowing smaller, lower-cost spacecraft to take these measurements. In fact, this new system could not only enable small spacecraft to measure the magnetic field, it could replace the standard attitude control systems in future spacecraft that orbit Earth, allowing them to provide the important global measurements that enable us to understand how Earth’s magnetic field protects us from dangerous solar particles.

      Photo of the aurora (taken in Alaska) showing small scale features that are often present. Credit: NASA/Sebastian Saarloos
      Solar storms drive space weather that threatens our many assets in space and can also disrupt Earth’s upper atmosphere impacting our communications and power grids. Thankfully, the Earth’s magnetic field protects us and funnels much of that energy into the north and south poles creating aurorae. The aurorae are a beautiful display of the electromagnetic energy and currents that flow throughout the Earth’s space environment. They often have small-scale magnetic features that affect the total energy flowing through the system. Observing these small features requires multiple simultaneous observations over a broad range of spatial and temporal scales, which can be accomplished by constellations of small spacecraft.
      To enable such constellations, NASA is developing an innovative hybrid magnetometer that makes both direct current (DC) and alternating current (AC) magnetic measurements and is embedded in the spacecraft’s attitude determination and control system (ADCS)—the system that enables the satellite to know and control where it is pointing. High-performance, low SWAP+C (low-size, weight and power + cost) instruments are required, as is the ability to manufacture and test large numbers of these instruments within a typical flight build schedule. Future commercial or scientific satellites could use these small, lightweight embedded hybrid magnetometers to take the types of measurements that will expand our understanding of space weather and how Earth’s magnetic field responds to solar storms
      It is typically not possible to take research-quality DC and AC magnetic measurements using sensors within an ADCS since the ADCS is inside the spacecraft and near contaminating sources of magnetic noise such as magnetic torque rods—the electromagnets that generate a magnetic field and push against the Earth’s magnetic field to control the orientation of a spacecraft. Previous missions that have flown both DC and AC magnetometers placed them on long booms pointing in opposite directions from the satellite to keep the sensors as far from the spacecraft and each other as possible. In addition, the typical magnetometer used by an ADCS to measure the orientation of the spacecraft with respect to the geomagnetic field does not sample fast enough to measure the high-frequency signals needed to make magnetic field observations.
      A NASA-sponsored team at the University of Michigan is developing a new hybrid magnetometer and attitude determination and control system (HyMag-ADCS) that is a low-SWAP single package that can be integrated into a spacecraft without booms. HyMag-ADCS consists of a three-axis search coil AC magnetometer and a three-axis Quad-Mag DC magnetometer. The Quad-Mag DC magnetometer uses machine learning to enable boomless DC magnetometery, and the hybrid search-coil AC magnetometer includes attitude determination torque rods to enable the single 1U volume (103 cm) system to perform ADCS functions as well as collect science measurements.
      The magnetic torque rod and search coil sensor (left) and the Quad-Mag magnetometer prototype (right). Credit: Mark Moldwin The HyMag-ADCS team is incorporating the following technologies into the system to ensure success.
      Quad-Mag Hardware: The Quad-Mag DC magnetometer consists of four magneto-inductive magnetometers and a space-qualified micro-controller mounted on a single CubeSat form factor (10 x 10 cm) printed circuit board. These two types of devices are commercially available. Combining multiple sensors on a single board increases the instrument’s sensitivity by a factor of two compared to using a single sensor. In addition, the distributed sensors enable noise identification on small satellites, providing the science-grade magnetometer sensing that is key for both magnetic field measurements and attitude determination. The same type of magnetometer is part of the NASA Artemis Lunar Gateway Heliophysics Environmental and Radiation Measurement Experiment Suite (HERMES) Noisy Environment Magnetometer in a Small Integrated System (NEMISIS) magnetometer scheduled for launch in early 2027.
      Dual-use Electromagnetic Rods: The HyMag-ADCS team is using search coil electronics and torque rod electronics that were developed for other efforts in a new way. Use of these two electronics systems enables the electromagnetic rods in the HyMag-ADCS system to be used in two different ways—as torque rods for attitude determination and as search coils to make scientific measurements. The search coil electronics were designed for ground-based measurements to observe ultra-low frequency signals up to a few kHz that are generated by magnetic beacons for indoor localization. The torque rod electronics were designed for use on CubeSats and have flown on several University of Michigan CubeSats (e.g., CubeSat-investigating Atmospheric Density Response to Extreme driving [CADRE]). The HyMag-ADCS concept is to use the torque rod electronics as needed for attitude control and use the search coil electronics the rest of the time to make scientific AC magnetic field measurements.
      Machine Learning Algorithms for Spacecraft Noise Identification: Applying machine learning to these distributed sensors will autonomously remove noise generated by the spacecraft. The team is developing a powerful Unsupervised Blind Source Separation (UBSS) algorithm and a new method called Wavelet Adaptive Interference Cancellation for Underdetermined Platforms (WAIC-UP) to perform this task, and this method has already been demonstrated in simulation and the lab.
      The HyMag-ADCS system is early in its development stage, and a complete engineering design unit is under development. The project is being completed primarily with undergraduate and graduate students, providing hands-on experiential training for upcoming scientists and engineers.
      Early career electrical engineer Julio Vata and PhD student Jhanene Heying-Melendrez with art student resident Ana Trujillo Garcia in the magnetometer lab testing prototypes. Credit: Mark Moldwin For additional details, see the entry for this project on NASA TechPort .
      Project Lead: Prof. Mark Moldwin, University of Michigan
      Sponsoring Organization: NASA Heliophysics Division’s Heliophysics Technology and Instrument Development for Science (H-TIDeS) program.
      Share








      Details
      Last Updated Jun 17, 2025 Related Terms
      Technology Highlights Heliophysics Science Mission Directorate Science-enabling Technology Explore More
      2 min read Hubble Studies a Spiral’s Supernova Scene


      Article


      4 days ago
      5 min read NASA Launching Rockets Into Radio-Disrupting Clouds


      Article


      5 days ago
      2 min read Hubble Captures Starry Spectacle


      Article


      2 weeks ago
      View the full article
    • By Space Force
      Gen. Mike Guetlein, Vice Chief of Space Operations, visits Kirtland Air Force Base, signaling the base’s growing importance in space innovation, research and national defense.

      View the full article
  • Check out these Videos

×
×
  • Create New...