Members Can Post Anonymously On This Site
NASA to Provide Updates, Coverage for Final Test Ahead of Moon Mission
-
Similar Topics
-
By NASA
NASA Administrator Bill Nelson, left, and U.S. Department of State Acting Assistant Secretary in the Bureau of Oceans and International Environmental and Scientific Affairs Jennifer R. Littlejohn, right, look on as Ambassador of the Republic of Austria to the United States of America Petra Schneebauer, signs the Artemis Accords, Wednesday, Dec. 11, 2024, at the Mary W. Jackson NASA Headquarters building in Washington. The Republic of Austria is the 50th country to sign the Artemis Accords, which establish a practical set of principles to guide space exploration cooperation among nations participating in NASA’s Artemis program. Credit: NASA/Joel Kowsky
Lee esta nota de prensa en español aquí.
Panama and Austria signed the Artemis Accords Wednesday during separate signing ceremonies at NASA Headquarters in Washington, becoming the 49th and 50th nations to commit to the responsible exploration of space for all humanity.
“NASA welcomes Panama and Austria to the Artemis Accords community and celebrates 50 countries united by shared principles for the safe and responsible exploration of space,” NASA Administrator Bill Nelson said. “More than ever before, NASA is opening space to more nations and more people for the benefit of all. Together we are building long-term and peaceful deep space exploration for the Artemis Generation.”
In just a few years, the original group of eight country signatories including the United States has multiplied, with 17 countries signings in 2024. More than a number, the Artemis Accords represent a robust community, from every region of the world, unified by the same goal: to ensure safe and responsible civil space exploration.
Through the Artemis Accords, the United States and other signatories are progressing toward continued safe and sustainable exploration of space with concrete outcomes. They committed to a method of operation and set of recommendations on non-interference, interoperability, release of scientific data, long-term sustainability guidelines, and registration to advance the implementation of the Artemis Accords.
Potential focus areas for the next year include further advancing sustainability, including debris management for both lunar orbit and the surface of the Moon.
Austria Joins Artemis Accords
Petra Schneebauer, ambassador of the Republic of Austria to the United States, signed the accords on behalf of Austria, becoming the 50th country signatory.
“Austria is proud to sign the Artemis Accords, an important step in fostering international cooperation for the civil exploration of the Moon and expanding humanity’s presence in the cosmos,” said Schneebauer. “By signing the Accords, we reaffirm our commitment to the peaceful, responsible, and cooperative use of space while emphasizing our support for strong multilateral partnerships and scientific progress. This cooperation will open new prospects for Austrian businesses, scientists, and research institutions to engage in pioneering space initiatives.”
Jennifer Littlejohn, acting assistant secretary, Bureau of Oceans and International Environmental and Scientific Affairs, U.S. Department of State, also participated in Austria’s signing event.
Panama Joins Artemis Accords
Earlier Wednesday, Nelson hosted Panama for a signing ceremony. José Miguel Alemán Healy, ambassador of the Republic of Panama to the United States, signed the Artemis Accords on behalf of Panama. Principal Deputy Assistant Secretary Tony Fernandes for U.S. Department of State’s Bureau of Oceans and International Environmental and Scientific Affairs also participated in the event.
NASA Administrator Bill Nelson, left, Ambassador of the Republic of Panama to the United States of America José Miguel Alemán Healy, center, and U.S. Department of State Principal Deputy Assistant Secretary in the Bureau of Oceans and International Environmental and Scientific Affairs Tony Fernandes, pose for a picture after the Republic of Panama signed the Artemis Accords, Wednesday, Dec. 11, 2024, at the Mary W. Jackson NASA Headquarters building in Washington. The Republic of Panama is the 49th country to sign the Artemis Accords, which establish a practical set of principles to guide space exploration cooperation among nations participating in NASA’s Artemis program. Credit: NASA/Joel Kowsky “Today, Panama takes its place among many other nations looking not just to our own horizons, but to the horizons beyond our planet – exploring, learning, and contributing to humanity’s collective knowledge,” said Alemán.”This moment represents far more than a diplomatic signature. It is a bold commitment to peaceful exploration, scientific discovery, and international collaboration.”
In 2020, the United States, led by NASA with the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords, identifying a set of principles promoting the beneficial use of space for humanity.
The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior that NASA and its partners have supported, including the public release of scientific data.
The accords are a voluntary commitment to engage in safe, transparent, responsible behavior in space, and any nation that wants to commit to those values is welcome to sign.
Learn more about the Artemis Accords at:
https://www.nasa.gov/artemis-accords
-end-
Meira Bernstein / Elizabeth Shaw
Headquarters, Washington
202-358-1600
meira.b.bernstein@nasa.gov / elizabeth.a.shaw@nasa.gov
Share
Details
Last Updated Dec 11, 2024 LocationNASA Headquarters Related Terms
Bill Nelson Office of International and Interagency Relations (OIIR) View the full article
-
By Space Force
As a key theme throughout his keynote, Bentivegna shared how Guardians are exemplifying his three initiatives: ‘Elevate the Journey’, ‘Cultivate the Warfighter’ and ‘Create the Future.’
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA/Steve Parcel The most effective way to prove a new idea is to start small, test, learn, and test again. A team of researchers developing an atmospheric probe at NASA’s Armstrong Flight Research Center in Edwards, California, are taking that approach. The concept could offer future scientists a potentially better and more economical way to collect data on other planets.
The latest iteration of the atmospheric probe flew after release from a quad-rotor remotely piloted aircraft on Oct. 22 above Rogers Dry Lake, a flight area adjacent to NASA Armstrong. The probe benefits from NASA 1960s research on lifting body aircraft, which use the aircraft’s shape for lift instead of wings. Testing demonstrated the shape of the probe works.
“I’m ecstatic,” said John Bodylski, atmospheric probe principal investigator at NASA Armstrong. “It was completely stable in flight. We will be looking at releasing it from a higher altitude to keep it flying longer and demonstrate more maneuvers.”
An atmospheric probe model attached upside down to a quad rotor remotely piloted aircraft ascends with the Moon visible on Oct. 22, 2024. The quad rotor aircraft released the probe above Rogers Dry Lake, a flight area adjacent NASA’s Armstrong Flight Research Center in Edwards, California. The probe was designed and built at the center.NASA/Steve Freeman Starting with a Center Innovation Fund award in 2023, Bodylski worked closely with the center’s Dale Reed Subscale Flight Research Laboratory to design and build three atmospheric probe models, each vehicle 28 inches long from nose to tail. One model is a visual to show what the concept looks like, while two additional prototypes improved the technology’s readiness.
The road to the successful flight wasn’t smooth, which is expected with any new flight idea. The first flight on Aug. 1 didn’t go as planned. The release mechanism didn’t work as expected and air movement from the quad rotor aircraft was greater than anticipated. It was that failure that inspired the research team to take another look at everything about the vehicle, leading to many improvements, said Justin Hall, NASA Armstrong chief pilot of small, unmanned aircraft systems.
Fast forward to Oct. 22, where the redesign of the release mechanism, in addition to an upside-down release and modified flight control surfaces, led to a stable and level flight. “Everything we learned from the first vehicle failing and integrating what we learned into this one seemed to work well,” Hall said. “This is a win for us. We have a good place to go from here and there’s some more changes we can make to improve it.”
Justin Link, left, small unmanned aircraft systems pilot; John Bodylski, atmospheric probe principal investigator; and Justin Hall, chief pilot of small unmanned aircraft systems, discuss details of the atmospheric probe flight plan on Oct. 22, 2024. A quad rotor remotely piloted aircraft released the probe above Rogers Dry Lake, a flight area adjacent NASA’s Armstrong Flight Research Center in Edwards, California. The probe was designed and built at the center.NASA/Steve Freeman Bodylski added, “We are going to focus on getting the aircraft to pull up sooner to give us more flight time to learn more about the prototype. We will go to a higher altitude [this flight started at 560 feet altitude] on the next flight because we are not worried about the aircraft’s stability.”
When the team reviewed flight photos and video from the Oct. 22 flight they identified additional areas for improvement. Another atmospheric probe will be built with enhancements and flown. Following another successful flight, the team plans to instrument a future atmospheric probe that will gather data and improve computer models. Data gathering is the main goal for the current flights to give scientists confidence in additional probe shapes for atmospheric missions on other planets.
If this concept is eventually chosen for a mission, it would ride on a satellite to its destination. From there, the probe would separate as the parent satellite orbits around a planet, then enter and dive through the atmosphere as it gathers information for clues of how the solar system formed.
Justin Hall, chief pilot of small unmanned aircraft systems, prepares the atmospheric probe for flight above Rogers Dry Lake, a flight area adjacent NASA’s Armstrong Flight Research Center in Edwards, California. At right, Justin Link, small unmanned aircraft systems pilot, assists. The probe, designed and built at the center, flew after release from a quad rotor remotely piloted aircraft on Oct. 22, 2024.NASA/Steve Freeman Derek Abramson, left, chief engineer for the Dale Reed Subscale Flight Research Laboratory, and Justin Link, small unmanned aircraft system pilot, carry the atmospheric probe model and a quad rotor remotely piloted aircraft to position it for flight on Oct. 24, 2024. John Bodylski, probe principal investigator, right, and videographer Jacob Shaw watch the preparations. Once at altitude, the quad rotor aircraft released the probe above Rogers Dry Lake, a flight area adjacent to NASA’s Armstrong Flight Research Center in Edwards, California. The probe was designed and built at the center.NASA/Steve Freeman A quad rotor remotely piloted aircraft releases the atmospheric probe model above Rogers Dry Lake, a flight area adjacent NASA’s Armstrong Flight Research Center in Edwards, California, on Oct. 22, 2024. The probe was designed and built at the center.NASA/Carla Thomas Share
Details
Last Updated Dec 11, 2024 Related Terms
Armstrong Flight Research Center Aeronautics Center Innovation Fund Flight Innovation Space Technology Mission Directorate Explore More
3 min read NASA Moves Drone Package Delivery Industry Closer to Reality
Article 24 hours ago 1 min read NASA TechLeap Prize: Space Technology Payload Challenge
Article 1 day ago 1 min read 3D Printable Bioreactor for Deep Space Food Production
Article 1 day ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Armstrong Capabilities & Facilities
Armstrong Technologies
Armstrong Flight Research Center History
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Watersheds on the U.S. Eastern Seaboard will be among the areas most affected by underground saltwater intrusion by the year 2100 due to sea level rise and changes in groundwater supplies, according to a NASA-DOD study. NASA’s Terra satellite captured this image on April 21, 2023. Intrusion of saltwater into coastal groundwater can make water there unusable, damage ecosystems, and corrode infrastructure.
Seawater will infiltrate underground freshwater supplies in about three of every four coastal areas around the world by the year 2100, according to a recent study led by researchers at NASA’s Jet Propulsion Laboratory in Southern California. In addition to making water in some coastal aquifers undrinkable and unusable for irrigation, these changes can harm ecosystems and corrode infrastructure.
Called saltwater intrusion, the phenomenon happens below coastlines, where two masses of water naturally hold each other at bay. Rainfall on land replenishes, or recharges, fresh water in coastal aquifers (underground rock and soil that hold water), which tends to flow below ground toward the ocean. Meanwhile, seawater, backed by the pressure of the ocean, tends to push inland. Although there’s some mixing in the transition zone where the two meet, the balance of opposing forces typically keeps the water fresh on one side and salty on the other.
Now, two impacts of climate change are tipping the scales in favor of salt water. Spurred by planetary warming, sea level rise is causing coastlines to migrate inland and increasing the force pushing salt water landward. At the same time, slower groundwater recharge — due to less rainfall and warmer weather patterns — is weakening the force moving the underground fresh water in some areas.
Worldwide Intrusion
Saltwater intrusion will affect groundwater in about three of every four coastal aquifers around the world by the year 2100, a NASA-DOD study estimates. Saltwater can make groundwater in coastal areas undrinkable and useless for irrigation, as well as harm ecosystems and corrode infrastructure.NASA/JPL-Caltech The study, published in Geophysical Research Letters in November, evaluated more than 60,000 coastal watersheds (land area that channels and drains all the rainfall and snowmelt from a region into a common outlet) around the world, mapping how diminished groundwater recharge and sea level rise will each contribute to saltwater intrusion while estimating what their net effect will be.
Considering the two factors separately, the study’s authors found that by 2100 rising sea levels alone will tend to drive saltwater inland in 82% of coastal watersheds studied. The transition zone in those places would move a relatively modest distance: no more than 656 feet (200 meters) from current positions. Vulnerable areas include low-lying regions such as Southeast Asia, the coast around the Gulf of Mexico, and much of the United States’ Eastern Seaboard.
Meanwhile, slower recharge on its own will tend to cause saltwater intrusion in 45% of the coastal watersheds studied. In these areas, the transition zone would move farther inland than it will from sea level rise — as much as three-quarters of a mile (about 1,200 meters) in some places. The regions to be most affected include the Arabian Peninsula, Western Australia, and Mexico’s Baja California peninsula. In about 42% of coastal watersheds, groundwater recharge will increase, tending to push the transition zone toward the ocean and in some areas overcoming the effect of saltwater intrusion by sea level rise.
All told, due to the combined effects of changes in sea level and groundwater recharge, saltwater intrusion will occur by century’s end in 77% of the coastal watersheds evaluated, according to the study.
Generally, lower rates of groundwater recharge are going to drive how far saltwater intrudes inland, while sea level rise will determine how widespread it is around the world. “Depending on where you are and which one dominates, your management implications might change,” said Kyra Adams, a groundwater scientist at JPL and the paper’s lead author.
For example, if low recharge is the main reason intrusion is happening in one area, officials there might address it by protecting groundwater resources, she said. On the other hand, if the greater concern is that sea level rise will oversaturate an aquifer, officials might divert groundwater.
Global Consistency
Co-funded by NASA and the U.S. Department of Defense (DOD), the study is part of an effort to evaluate how sea level rise will affect the department’s coastal facilities and other infrastructure. It used information on watersheds collected in HydroSHEDS, a database managed by the World Wildlife Fund that uses elevation observations from the NASA Shuttle Radar Topography Mission. To estimate saltwater intrusion distances by 2100, the researchers used a model accounting for groundwater recharge, water table rise, fresh- and saltwater densities, and coastal migration from sea level rise, among other variables.
Study coauthor Ben Hamlington, a climate scientist at JPL and a coleader of NASA’s Sea Level Change Team, said that the global picture is analogous to what researchers see with coastal flooding: “As sea levels rise, there’s an increased risk of flooding everywhere. With saltwater intrusion, we’re seeing that sea level rise is raising the baseline risk for changes in groundwater recharge to become a serious factor.”
A globally consistent framework that captures localized climate impacts is crucial for countries that don’t have the expertise to generate one on their own, he added.
“Those that have the fewest resources are the ones most affected by sea level rise and climate change,” Hamlington said, “so this kind of approach can go a long way.”
News Media Contacts
Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
Share
Details
Last Updated Dec 11, 2024 Related Terms
Shuttle Radar Topography Mission (SRTM) Earth Earth Science Division Jet Propulsion Laboratory Oceans Explore More
5 min read NASA Performs First Aircraft Accident Investigation on Another World
Article 3 hours ago 6 min read NASA’s PACE, US-European SWOT Satellites Offer Combined Look at Ocean
Article 2 days ago 3 min read Leader of NASA’s VERITAS Mission Honored With AGU’s Whipple Award
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 Min Read They Grow So Fast: Moon Tree Progress Since NASA’s Artemis I Mission
In the two years since NASA’s Orion spacecraft returned to Earth with more than 2,000 tree seedlings sourced in a partnership with USDA Forest Service, Artemis I Moon trees have taken root at 236 locations across the contiguous United States. Organizations are cultivating more than just trees, as they nurture community connections, spark curiosity about space, and foster a deeper understanding of NASA’s missions.
Universities, federal agencies, museums, and other organizations who were selected to be Moon tree recipients have branched out to provide their community unique engagements with their seedling.
Children sitting in a circle around a newly planted Moon tree and learning about NASA’s Artemis I mission. Adria Gillespie “Through class visits to the tree, students have gained a lot of interest in caring for the tree, and their curiosity for the unknown in outer space sparked them to do research of their own to get answers to their inquiries,” said Adria Gillespie, the district science coach at Greenfield Union School District in Greenfield, California.
The presence of a Moon tree at schools has blossomed into more student engagements surrounding NASA’s missions. Along with planting their American Sycamore, students from Eagle Pointe Elementary in Plainfield, Illinois, are participating in a Lunar Quest club to learn about NASA and engage in a simulated field trip to the Moon.
Eagle Pointe Elementary students also took part in a planting ceremony for their seedling, where they buried a time capsule with the seed, and established a student committee responsible for caring for their Moon tree.
At Marshall STEMM Academy in Toledo, Ohio, second grade students were assigned reading activities associated with their Moon tree, fourth graders created Moon tree presentations to show the school, and students engaged with city leaders and school board members to provide a Moon tree dedication.
Two individuals planting a Moon tree. Brandon Dillman A seedling sent to The Gathering Garden in Mount Gilead, North Carolina, is cared for by community volunteers. Lessons with local schools and 4-H clubs, as well as the establishment of newsletters and social media to maintain updates, have sprouted from The Gathering Garden’s Loblolly Pine.
Sprucing Up the Moon Trees’ Environment
In addition to nurturing their Moon tree, many communities have planted other trees alongside their seedling to foster a healthier environment. In Castro Valley, California, a non-profit called ForestR planted oak, fir, and sequoia trees to nestle their seedling among a tree “family.”
New homes for additional Moon tree seedlings are being identified each season through Fall 2025. Communities continue to track how the impact of NASA’s science and innovation grows alongside their Moon trees.
NASA’s “new generation” Moon trees originally blossomed from NASA’s Apollo 14 mission, where NASA astronaut Stuart Roosa carried tree seeds into lunar orbit. NASA’s Next Generation STEM project partnered with USDA Forest Service to bring Moon trees to selected organizations. As NASA continues to work for the benefit of all, its Moon trees have demonstrated how one tiny seed can sprout positive change for communities, the environment, and education.
Learn more about NASA’s STEM engagements: https://stem.nasa.gov
Keep Exploring Discover More Topics From NASA
NASA STEM Artemis Moon Trees
ARTEMIS I
Outside the Classroom
For Kids and Students
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.