Jump to content

Webb's infrared universe

Recommended Posts

Webb_s_infrared_universe_card_full.jpg Video: 00:01:00

The James Webb Space Telescope (Webb) will observe the Universe in the near-infrared and mid-infrared – at wavelengths longer than visible light.

By viewing the Universe at infrared wavelengths with an unprecedented sensitivity Webb will open up a new window to the cosmos. With infrared wavelengths it can see the first stars and galaxies forming after the Big Bang. Its infrared vision also allows Webb to study stars and planetary systems forming inside thick clouds of gas and dust that are opaque to visible light.

The primary goals of Webb are to study galaxy, star and planet formation in the Universe. To see the very first stars and galaxies that formed in the early Universe, we have to look deep into space to look back in time (because it takes light time to travel from there to here, the farther out we look, the further we look back in time).

The Universe is expanding, and therefore the farther we look, the faster objects are moving away from us, redshifting the light. Redshift means that light that is emitted as ultraviolet or visible light is shifted more and more to redder wavelengths, into the near- and mid-infrared part of the electromagnetic spectrum for very high redshifts. Therefore, to study the earliest star and galaxy formation in the Universe, we have to observe infrared light and use a telescope and instruments optimised for this light like Webb.

Star formation in the local universe takes place in the centres of dense, dusty clouds, obscured from our eyes at normal visible wavelengths. Near-infrared light, with its longer wavelength, is less hindered by the small dust particles, allowing near-infrared light to seep through the dust clouds. By observing the emitted near-infrared light we can penetrate the dust and see the processes leading to star and planet formation.

Objects of about Earth's temperature emit most of their light at mid-infrared wavelengths. These temperatures are also found in dusty regions forming stars and planets, so with mid-infrared radiation we can see directly the glow of this slightly warm dust and study its distribution and properties.

Webb is an international partnership between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      A new streaming platform is set to inspire the next generation of scientists, engineers, and astronauts, bringing the wonders of space closer to classrooms than ever before. Schools across Europe are invited to embark on this cosmic journey!
      View the full article
    • By European Space Agency
      Image: X-ray mission lifts off to study high-energy Universe View the full article
    • By European Space Agency
      Video: 00:03:31 ESA’s Euclid mission will create a 3D-map of the Universe that scientists will use to measure the properties of dark energy and dark matter and uncover the nature of these mysterious components. The map will contain a vast amount of data, it will cover more than a third of the sky and its third dimension will represent time spanning 10 billion years of cosmic history.  
      But dealing with the huge and detailed set of novel data that Euclid observations will produce is not an easy task. To prepare for this, scientists in the Euclid Consortium have developed one of the most accurate and comprehensive computer simulations of the large-scale structure of the Universe ever produced. They named this the Euclid Flagship simulation. 
      Running on large banks of advanced processors, computer simulations provide a unique laboratory to model the formation and evolution of large-scale structures in the Universe, such as galaxies, galaxy clusters, and the filamentary cosmic web they form. These state-of-the-art computational techniques allow astrophysicists to trace the motion and behavior of an extremely large number of dark-matter particles over cosmological volumes under the influence of their own gravitational pull. They replicate how and where galaxies form and grow, and are used to predict their distribution across the celestial sphere. 
      Explore the Euclid Flagship simulation in this video and get a sneak preview of the structure of the dark Universe, as we currently model it. New insights will be brought to you by the Euclid mission in the coming years. 
      View the full article
    • By European Space Agency
      Image: Webb snaps detailed infrared image of actively forming stars View the full article
  • Check out these Videos

  • Create New...