Jump to content

Recommended Posts

Posted
low_STSCI-H-p1909a-k-1340x520.png

The universe is very cluttered. Myriad island cities of stars, the galaxies, form a backdrop tapestry. Much closer to home are nebulae, star clusters, and assorted other foreground celestial objects that are mostly within our Milky Way galaxy. Despite the vastness of space, objects tend to get in front of each other.

This happened when astronomers used the Hubble Space Telescope to photograph the globular star cluster NGC 6752 (located 13,000 light-years away in our Milky Way's halo). In a celestial game of "Where's Waldo?," Hubble's sharp vision uncovered a never-before-seen dwarf galaxy located far behind the cluster's crowded stellar population. The loner galaxy is in our own cosmic backyard, only 30 million light-years away (approximately 2,300 times farther than the foreground cluster).

The object is classified as a dwarf spheroidal galaxy because it measures only around 3,000 light-years at its greatest extent (barely 1/30th the diameter of the Milky Way), and it is roughly a thousand times dimmer than the Milky Way.

Because of its 13-billion-year-old age, and its isolation — which resulted in hardly any interaction with other galaxies — the dwarf is the astronomical equivalent of a living fossil from the early universe.

The international team of astronomers that carried out this study consists of L. Bedin (INAF-Astronomical Observatory of Padua, Italy), M. Salaris (Liverpool John Moores University, Liverpool, England, UK), R. Rich (University of California, Los Angeles, California, USA), H. Richer (University of British Columbia, Vancouver, British Columbia, Canada), J. Anderson (Space Telescope Science Institute, Baltimore, Maryland, USA), B. Bettoni (INAF-Astronomical Observatory of Padua, Italy), D. Nardiello, A. Milone, and A. Marino (University of Padua, Italy), M. Libralato and A. Bellini (Space Telescope Science Institute, Baltimore, Maryland, USA), A. Dieball (University of Bonn, Bonn, Germany), P. Bergeron (University of Montreal, Quebec, Canada), A. Burgasser (University of California, San Diego, California, USA), and D. Apai (University of Arizona, Tucson, Arizona, USA).

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Images Galaxies Near and Far
      This NASA/ESA Hubble Space Telescope image features the remote galaxy HerS 020941.1+001557, which appears as a red arc that partially encircles a foreground elliptical galaxy. ESA/Hubble & NASA, H. Nayyeri, L. Marchetti, J. Lowenthal This NASA/ESA Hubble Space Telescope image offers us the chance to see a distant galaxy now some 19.5 billion light-years from Earth (but appearing as it did around 11 billion years ago, when the galaxy was 5.5 billion light-years away and began its trek to us through expanding space). Known as HerS 020941.1+001557, this remote galaxy appears as a red arc partially encircling a foreground elliptical galaxy located some 2.7 billion light-years away. Called SDSS J020941.27+001558.4, the elliptical galaxy appears as a bright dot at the center of the image with a broad haze of stars outward from its core. A third galaxy, called SDSS J020941.23+001600.7, seems to be intersecting part of the curving, red crescent of light created by the distant galaxy.
      The alignment of this trio of galaxies creates a type of gravitational lens called an Einstein ring. Gravitational lenses occur when light from a very distant object bends (or is ‘lensed’) around a massive (or ‘lensing’) object located between us and the distant lensed galaxy. When the lensed object and the lensing object align, they create an Einstein ring. Einstein rings can appear as a full or partial circle of light around the foreground lensing object, depending on how precise the alignment is. The effects of this phenomenon are much too subtle to see on a local level but can become clearly observable when dealing with curvatures of light on enormous, astronomical scales.
      Gravitational lenses not only bend and distort light from distant objects but magnify it as well. Here we see light from a distant galaxy following the curve of spacetime created by the elliptical galaxy’s mass. As the distant galaxy’s light passes through the gravitational lens, it is magnified and bent into a partial ring around the foreground galaxy, creating a distinctive Einstein ring shape.
      The partial Einstein ring in this image is not only beautiful, but noteworthy. A citizen scientist identified this Einstein ring as part of the SPACE WARPS project that asked citizen scientists to search for gravitational lenses in images.
      Text Credit: ESA/Hubble
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated May 20, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Gravitational Lensing Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Gravitational Lenses



      Focusing in on Gravitational Lenses



      Hubble’s Night Sky Challenge


      View the full article
    • By NASA
      Astronaut Anne McClain is pictured on May 1, 2025, near one of the International Space Station’s main solar arrays.Credit: NASA NASA astronaut Nichole Ayers and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi will answer prerecorded questions submitted by middle and high school students from New York and Ohio. Both groups will hear from the astronauts aboard the International Space Station in two separate events.
      The first event at 10:20 a.m. EDT on Tuesday, May 20, includes students from Long Beach Middle School in Lido Beach, New York. Media interested in covering the event at Long Beach Middle School must RSVP no later than 5 p.m. Monday, May 19, to Christi Tursi at: ctursi@lbeach.org or 516-771-3960.
      The second event at 11 a.m. EDT on Friday, May 23, is with students from Vermilion High School in Vermilion, Ohio. Media interested in covering the event at Vermilion High School must RSVP no later than 5 p.m. Thursday, May 22, to Jennifer Bengele at: jbengele@vermilionschools.org or 440-479-7783.
      Watch both 20-minute Earth-to-space calls live on NASA STEM YouTube Channel.
      Long Beach Middle School will host the event for students in grades 6 through 8. The school aims to provide both the students and community with an experience that bridge gaps in space sciences with teaching and learning in classrooms.
      Vermilion High School will host the event for students in grades 9 through 12, to help increase student interest in science, technology, engineering, and mathematics career pathways.
      For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars, inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos of astronauts aboard the space station at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated May 16, 2025 LocationNASA Headquarters Related Terms
      Humans in Space In-flight Education Downlinks International Space Station (ISS) Johnson Space Center Learning Resources NASA Headquarters View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Captures Cotton Candy Clouds
      This NASA/ESA Hubble Space Telescope image features a cloudscape in the Large Magellanic Cloud., a dwarf satellite galaxy of the Milky Way. ESA/Hubble & NASA, C. Murray This NASA/ESA Hubble Space Telescope image features a sparkling cloudscape from one of the Milky Way’s galactic neighbors, a dwarf galaxy called the Large Magellanic Cloud. Located 160,000 light-years away in the constellations Dorado and Mensa, the Large Magellanic Cloud is the largest of the Milky Way’s many small satellite galaxies.
      This view of dusty gas clouds in the Large Magellanic Cloud is possible thanks to Hubble’s cameras, such as the Wide Field Camera 3 (WFC3) that collected the observations for this image. WFC3 holds a variety of filters, and each lets through specific wavelengths, or colors, of light. This image combines observations made with five different filters, including some that capture ultraviolet and infrared light that the human eye cannot see.
      The wispy gas clouds in this image resemble brightly colored cotton candy. When viewing such a vividly colored cosmic scene, it is natural to wonder whether the colors are ‘real’. After all, Hubble, with its 7.8-foot-wide (2.4 m) mirror and advanced scientific instruments, doesn’t bear resemblance to a typical camera! When image-processing specialists combine raw filtered data into a multi-colored image like this one, they assign a color to each filter. Visible-light observations typically correspond to the color that the filter allows through. Shorter wavelengths of light such as ultraviolet are usually assigned blue or purple, while longer wavelengths like infrared are typically red.
      This color scheme closely represents reality while adding new information from the portions of the electromagnetic spectrum that humans cannot see. However, there are endless possible color combinations that can be employed to achieve an especially aesthetically pleasing or scientifically insightful image.

      Watch “How Hubble Images are Made” on YouTube

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated May 15, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Emission Nebulae Goddard Space Flight Center Nebulae The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Nebulae



      Science Behind the Discoveries



      Hubble’s Night Sky Challenge


      View the full article
    • By NASA
      6 min read
      Let’s Bake a Cosmic Cake!
      To celebrate what would have been the 100th birthday of Dr. Nancy Grace Roman — NASA’s first chief astronomer and the namesake for the agency’s nearly complete Nancy Grace Roman Space Telescope — we’re baking a birthday cake! This isn’t your ordinary birthday treat — this cosmic cake represents the contents of our universe and everything the Roman telescope will uncover.
      NASA’s Nancy Grace Roman Space Telescope Cosmic Cake NASA The outside of our cosmic cake depicts the sky as we see it from Earth—inky black and dotted with sparkling stars. The inside represents the universe as Roman will see it. This three-layer cake charts the mysterious contents of our universe — mostly dark energy, then dark matter, and finally just five percent normal matter. As you cut into our universe cake, out spills a candy explosion symbolizing the wealth of cosmic objects Roman will see.
      Roman Cosmic Cake Instructions
      Ingredients:
      Two boxes of vanilla cake mix and required ingredients Food coloring in three colors Black frosting Edible glitter Yellow sprinkles  Nonpareil sprinkle mix  Chocolate nonpareil candies  Popping candy  Miniature creme sandwich cookies  Granulated sugar  Sour candies  Dark chocolate chips  Jawbreakers  To make our cosmic cake, we first need to account for the universe’s building blocks — normal matter, dark matter, and dark energy. Comprising about five percent of the universe, normal matter is the stuff we see around us every day, from apples to stars in the sky. Outnumbering normal matter by five times, dark matter is an invisible mass that makes up about 25 percent of the universe. Finally, dark energy — a mysterious something accelerating our universe’s expansion — makes up about 68 percent of the cosmos.
      No one knows what dark matter and dark energy truly are, but we know they exist due to their effects on the universe. Roman will provide clues to these puzzles by 3D mapping matter alongside the expansion of the universe through time. 
      To depict the universe’s building blocks in our cosmic cake, mix the cake batter according to your chosen recipe. Pour one-fourth of the batter into one bowl for the dark matter layer, a little less than three-fourths into another bowl for dark energy, and the remainder into a separate bowl for normal matter. This will give you the quantities of batter for dark energy and dark matter, respectively. Use the remainder to represent normal matter. Color each bowl of batter differently using food coloring, then pour them into three separate cake pans and bake. The different sized layers will have different baking times, so watch them carefully to ensure proper cooking.
      While our cake bakes, we’ll create the cosmic candy mix — the core of our cake that represents the universe’s objects that Roman will uncover.
      First, pour yellow sprinkles into a bowl to symbolize the billions of stars Roman will see, including once-hidden stars on the far side of the Milky Way thanks to its ability to see starlight through gas and dust. 
      Roman’s data will also allow scientists to map gas and dust for the most complete picture yet of the Milky Way’s structure and how it births new stars. Add some granulated sugar to the candy mix as gas and dust.
      Next, add nonpareil sprinkles and chocolate nonpareil candies to symbolize galaxies and galaxy clusters. Roman will capture hundreds of millions of galaxies, precisely measuring their positions, shapes, sizes, and distances. By studying the properties of so many galaxies, scientists will be able to chart dark matter and dark energy’s effects more accurately than ever before.
      Now, add popping candies as explosive star deaths. Roman will witness tens of thousands of a special kind called type Ia supernovae. By studying how fast type Ia supernovae recede from us at different distances, scientists will trace cosmic expansion to better understand whether and how dark energy has changed throughout time.
      Supernovae aren’t the only stellar remnants that Roman will see. To represent neutron stars and black holes, add in jawbreakers and dark chocolate chips. Neutron stars are the remnants of massive stars that collapsed to the size of a city, making them the densest things we can directly observe. 
      The densest things we can’t directly observe are black holes. Most black holes are formed when massive stars collapse even further to a theoretical singular point of infinite density. Sometimes, black holes form when neutron stars merge—an epic event that Roman will witness. 
      Roman is also equipped to spot star-sized black holes in the Milky Way and supermassive black holes in other galaxies. Some supermassive black holes lie at the center of active galaxies—the hearts of which emit excessive energy compared to the rest of the galaxy. For these active cores, also spotted by Roman, add sour candies to the mix.
      Finally, add both whole and crushed miniature creme sandwich cookies to represent distant planets and planets-to-be. Peering into the center of our galaxy, Roman will scan for warped space-time indicating the presence of other worlds. The same set of observations could also reveal more than 100,000 more planets passing in front of other stars. Additionally, the Coronagraph Instrument will directly image both worlds and dusty disks around stars that can eventually form planets.
      After baking, remove the cake layers from the oven to cool. Cut a hole in the center of the thicker dark matter and dark energy layers. Then, stack these two layers using frosting to secure them. Pour the cosmic candy mix into the cake’s core. Then, place the thin normal matter layer on top, securing it with frosting. Frost the whole cake in black and dust it with edible glitter.
      Congratulations — your Roman Cosmic Cake is complete! As you look at the cake’s exterior, think of the night sky. As you slice the cake, imagine Roman’s deeper inspection to unveil billions of cosmic objects and clues about our universe’s mysterious building blocks.
      By Laine Havens
      NASA’s Goddard Space Flight Center
      Share








      Details
      Last Updated May 15, 2025 Related Terms
      Nancy Grace Roman Space Telescope For Kids and Students View the full article
    • By NASA
      Credit: NASA NASA has selected Rocket Lab USA Inc. of Long Beach, California, to launch the agency’s Aspera mission, a SmallSat to study galaxy formation and evolution, providing new insights into how the universe works.
      The selection is part of NASA’s Venture-Class Acquisition of Dedicated and Rideshare (VADR) launch services contract. This contract allows the agency to make fixed-price indefinite-delivery/indefinite-quantity launch service task order awards during VADR’s five-year ordering period, with a maximum total contract value of $300 million.
      Through the observation of ultraviolet light, Aspera will examine hot gas in the space between galaxies, called the intergalactic medium. The mission will study the inflow and outflow of gas from galaxies, a process thought to contribute to star formation.
      Aspera is part of NASA’s Pioneers Program in the Astrophysics Division at NASA Headquarters in Washington, which funds compelling astrophysics science at a lower cost using small hardware and modest payloads. The principal investigator for Aspera is Carlos Vargas at the University of Arizona in Tucson. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR contract.
      To learn more about NASA’s Aspera mission and the Pioneers Program, visit:
      https://go.nasa.gov/42U1Wkn
      -end-
      Joshua Finch / Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      joshua.a.finch@nasa.gov / tiernan.doyle@nasa.gov
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      Share
      Details
      Last Updated May 14, 2025 LocationNASA Headquarters Related Terms
      Space Operations Mission Directorate Kennedy Space Center Launch Services Office Launch Services Program NASA Headquarters View the full article
  • Check out these Videos

×
×
  • Create New...