Members Can Post Anonymously On This Site
The Cabal, Black Magic and Extraterrestrial Life
-
Similar Topics
-
By Space Force
Ahead of the movie's theatrical release, Disney/Pixar invited military families to special screenings across the country, including at an event hosted by the Motion Picture Association in Washington, D.C.
View the full article
-
By NASA
A black hole has blasted out a surprisingly powerful jet in the distant universe, according to a study from NASA’s Chandra X-ray Observatory.X-ray: NASA/CXC/CfA/J. Maithil et al.; Illustration: NASA/CXC/SAO/M. Weiss; Image Processing: NASA/CXC/SAO/N. Wolk A black hole has blasted out a surprisingly powerful jet in the distant universe, according to a new study from NASA’s Chandra X-ray Observatory and discussed in our latest press release. This jet exists early enough in the cosmos that it is being illuminated by the leftover glow from the big bang itself.
Astronomers used Chandra and the Karl G. Jansky Very Large Array (VLA) to study this black hole and its jet at a period they call “cosmic noon,” which occurred about three billion years after the universe began. During this time most galaxies and supermassive black holes were growing faster than at any other time during the history of the universe.
The main graphic is an artist’s illustration showing material in a disk that is falling towards a supermassive black hole. A jet is blasting away from the black hole towards the upper right, as Chandra detected in the new study. The black hole is located 11.6 billion light-years from Earth when the cosmic microwave background (CMB), the leftover glow from the big bang, was much denser than it is now. As the electrons in the jets fly away from the black hole, they move through the sea of CMB radiation and collide with microwave photons. These collisions boost the energy of the photons up into the X-ray band (purple and white), allowing them to be detected by Chandra even at this great distance, which is shown in the inset.
Researchers, in fact, identified and then confirmed the existence of two different black holes with jets over 300,000 light-years long. The two black holes are 11.6 billion and 11.7 billion light-years away from Earth, respectively. Particles in one jet are moving at between 95% and 99% of the speed of light (called J1405+0415) and in the other at between 92% and 98% of the speed of light (J1610+1811). The jet from J1610+1811 is remarkably powerful, carrying roughly half as much energy as the intense light from hot gas orbiting the black hole.
The team was able to detect these jets despite their great distances and small separation from the bright, growing supermassive black holes — known as “quasars” — because of Chandra’s sharp X-ray vision, and because the CMB was much denser then than it is now, enhancing the energy boost described above.
When quasar jets approach the speed of light, Einstein’s theory of special relativity creates a dramatic brightening effect. Jets aimed toward Earth appear much brighter than those pointed away. The same brightness astronomers observe can come from vastly different combinations of speed and viewing angle. A jet racing at near-light speed but angled away from us can appear just as bright as a slower jet pointed directly at Earth.
The researchers developed a novel statistical method that finally cracked this challenge of separating effects of speed and of viewing angle. Their approach recognizes a fundamental bias: astronomers are more likely to discover jets pointed toward Earth simply because relativistic effects make them appear brightest. They incorporated this bias using a modified probability distribution, which accounts for how jets oriented at different angles are detected in surveys.
Their method works by first using the physics of how jet particles scatter the CMB to determine the relationship between jet speed and viewing angle. Then, instead of assuming all angles are equally likely, they apply the relativistic selection effect: jets beamed toward us (smaller angles) are overrepresented in our catalogs. By running ten thousand simulations that match this biased distribution to their physical model, they could finally determine the most probable viewing angles: about 9 degrees for J1405+0415 and 11 degrees for J1610+1811.
These results were presented by Jaya Maithil (Center for Astrophysics | Harvard & Smithsonian) at the 246th meeting of the American Astronomical Society in Anchorage, AK, and are also being published in The Astrophysical Journal. A preprint is available here. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
This release is supported by an artist’s illustration of a jet blasting away from a supermassive black hole.
The black hole sits near the center of the illustration. It resembles a black marble with a fine yellow outline. Surrounding the black hole is a swirling disk, resembling a dinner plate tilted to face our upper right. This disk comprises concentric rings of fiery swirls, dark orange near the outer edge, and bright yellow near the core.
Shooting out of the black hole are two streaky beams of silver and pale violet. One bright beam shoots up toward our upper right, and a second somewhat dimmer beam shoots in the opposite direction, down toward our lower left. These beams are encircled by long, fine, corkscrewing lines that resemble stretched springs.
This black hole is located 11.6 billion light-years from Earth, much earlier in the history of the universe. Near this black hole, the leftover glow from the big bang, known as the cosmic microwave background or CMB, is much denser than it is now. As the electrons in the jets blast away from the black hole, they move through the sea of CMB radiation. The electrons boost the energies of the CMB light into the X-ray band, allowing the jets to be detected by Chandra, even at this great distance.
Inset at our upper righthand corner is an X-ray image depicting this interaction. Here, a bright white circle is ringed with a band of glowing purple energy. The jet is the faint purple line shooting off that ring, aimed toward our upper right, with a blob of purple energy at its tip.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
View the full article
-
By NASA
5 Min Read 3 Black Holes Caught Eating Massive Stars in NASA Data
A disk of hot gas swirls around a black hole in this illustration. Some of the gas came from a star that was pulled apart by the black hole, forming the long stream of hot gas on the right, feeding into the disk. Credits:
NASA/JPL-Caltech Black holes are invisible to us unless they interact with something else. Some continuously eat gas and dust, and appear to glow brightly over time as matter falls in. But other black holes secretly lie in wait for years until a star comes close enough to snack on.
Scientists have recently identified three supermassive black holes at the centers of distant galaxies, each of which suddenly brightened when it destroyed a star and then stayed bright for several months. A new study using space and ground-based data from NASA, ESA (European Space Agency), and other institutions presents these rare occurrences as a new category of cosmic events called “extreme nuclear transients.”
Looking for more of these extreme nuclear transients could help unveil some of the most massive supermassive black holes in the universe that are usually quiet.
“These events are the only way we can have a spotlight that we can shine on otherwise inactive massive black holes,” said Jason Hinkle, graduate student at the University of Hawaii and lead author of a new study in the journal Science Advances describing this phenomenon.
The black holes in question seem to have eaten stars three to 10 times heavier than our Sun. Feasting on the stars resulted in some of the most energetic transient events ever recorded.
This illustration shows a glowing stream of material from a star as it is being devoured by a supermassive black hole. When a star passes within a certain distance of a black hole — close enough to be gravitationally disrupted — the stellar material gets stretched and compressed as it falls into the black hole. NASA/JPL-Caltech These events as unleash enormous amount of high-energy radiation on the central regions of their host galaxies. “That has implications for the environments in which these events are occurring,” Hinkle said. “If galaxies have these events, they’re important for the galaxies themselves.”
The stars’ destruction produces high-energy light that takes over 100 days to reach peak brightness, then more than 150 days to dim to half of its peak. The way the high-energy radiation affects the environment results in lower-energy emissions that telescopes can also detect.
One of these star-destroying events, nicknamed “Barbie” because of its catalog identifier ZTF20abrbeie, was discovered in 2020 by the Zwicky Transient Facility at Caltech’s Palomar Observatory in California, and documented in two 2023 studies. The other two black holes were detected by ESA’s Gaia mission in 2016 and 2018 and are studied in detail in the new paper.
NASA’s Neil Gehrels Swift Observatory was critical in confirming that these events must have been related to black holes, not stellar explosions or other phenomena. The way that the X-ray, ultraviolet, and optical light brightened and dimmed over time was like a fingerprint matching that of a black hole ripping a star apart.
Scientists also used data from NASA’s WISE spacecraft, which was operated from 2009 to 2011 and then was reactivated as NEOWISE and retired in 2024. Under the WISE mission the spacecraft mapped the sky at infrared wavelengths, finding many new distant objects and cosmic phenomena. In the new study, the spacecraft’s data helped researchers characterize dust in the environments of each black hole. Numerous ground-based observatories additionally contributed to this discovery, including the W. M. Keck Observatory telescopes through their NASA-funded archive and the NASA-supported Near-Earth Object surveys ATLAS, Pan-STARRS, and Catalina.
“What I think is so exciting about this work is that we’re pushing the upper bounds of what we understand to be the most energetic environments of the universe,” said Anna Payne, a staff scientist at the Space Telescope Science Institute and study co-author, who helped look for the chemical fingerprints of these events with the University of Hawaii 2.2-meter Telescope.
A Future Investigators in NASA Earth and Space Science and Technology (FINESST) grant from the agency helped enable Hinkle to search for these black hole events. “The FINESST grant gave Jason the freedom to track down and figure out what these events actually were,” said Ben Shappee, associate professor at the Institute for Astronomy at the University of Hawaii, a study coauthor and advisor to Hinkle.
Hinkle is set to follow up on these results as a postdoctoral fellow at the University of Illinois Urbana-Champaign through the NASA Hubble Fellowship Program. “One of the biggest questions in astronomy is how black holes grow throughout the universe,” Hinkle said.
The results complement recent observations from NASA’s James Webb Space Telescope showing how supermassive black holes feed and grow in the early universe. But since only 10% of early black holes are actively eating gas and dust, extreme nuclear transients — that is, catching a supermassive black hole in the act of eating a massive star — are a different way to find black holes in the early universe.
Events like these are so bright that they may be visible even in the distant, early universe. Swift showed that extreme nuclear transients emit most of their light in the ultraviolet. But as the universe expands, that light is stretched to longer wavelengths and shifts into the infrared — exactly the kind of light NASA’s upcoming Nancy Grace Roman Space Telescope was designed to detect.
With its powerful infrared sensitivity and wide field of view, Roman will be able to spot these rare explosions from more than 12 billion years ago, when the universe was just a tenth of its current age. Scheduled to launch by 2027, and potentially as early as fall 2026, Roman could uncover many more of these dramatic events and offer a new way to explore how stars, galaxies, and black holes formed and evolved over time.
“We can take these three objects as a blueprint to know what to look for in the future,” Payne said.
Explore More
5 min read NASA’s Webb Rounds Out Picture of Sombrero Galaxy’s Disk
Article
1 day ago
2 min read Hubble Filters a Barred Spiral
Article
1 day ago
5 min read Apocalypse When? Hubble Casts Doubt on Certainty of Galactic Collision
Article
2 days ago
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
What is a black hole?
Well, the name is actually a little misleading because black holes aren’t actually holes. They’re regions in space that have a gravitational pull that is so strong that nothing can escape, not even light. Scientists know about two different sizes of black holes — stellar-mass black holes and supermassive black holes.
A stellar-mass black hole is born when a massive star dies. That’s a star that’s larger than our own Sun. These stars burn up all the nuclear fuel in their cores, and this causes them to collapse under their own gravity. This collapse causes an explosion that we call a supernova. The entire mass of the star is collapsing down into a tiny point, and the area of the black hole is just a few kilometers across.
Supermassive black holes can have a mass of millions to tens of billions of stars. Scientists believe that every galaxy in the universe contains a supermassive black hole. That’s up to one trillion galaxies in the universe. But we don’t know how these supermassive black holes form. And this is an area of active research.
What we do know is that supermassive black holes are playing a really important part in the formation and evolution of galaxies, and into our understanding of our place in the universe.
[END VIDEO TRANSCRIPT]
Full Episode List
Full YouTube Playlist
Share
Details
Last Updated May 13, 2025 Related Terms
General Explore More
1 min read NASA Ames Stars of the Month: May 2025
Article 1 day ago 3 min read NASA Earns Two Emmy Nominations for 2024 Total Solar Eclipse Coverage
Article 5 days ago 2 min read NASA Expands Youth Engagement With New Scouting America Agreement
Article 6 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
When most people think of NASA, they picture rockets, astronauts, and the Moon. But behind the scenes, a group of inventors is quietly rewriting the rules of what’s possible — on Earth, in orbit, and beyond. Their groundbreaking inventions eventually become technology available for industry, helping to shape new products and services that improve life around the globe. For their contributions to NASA technology, we welcome four new inductees into the 2024-2025 NASA Inventors Hall of Fame
A robot for space and the workplace
Myron (Ron) Diftler led the team behind Robonaut 2 (R2), a humanoid robot developed with General Motors. The goal was to create a robot that could help humans both in space and on the factory floor. The R2 robot became the first humanoid robot in space aboard the International Space Station, and part of its technology was licensed for use on Earth, leading to a grip-strengthening robotic glove to help humans with strenuous, repetitive tasks. From factories to space exploration, Diftler’s work has real-world impact.
Some of the toughest electronic chips on and off Earth
Technology developed to one day explore the surface of Venus has to be tough enough to survive the planet where temperatures hit 860°F and the atmosphere is akin to battery acid. Philip Neudeck’s silicon carbide integrated circuits don’t just work — they ran for over 60 days in simulated Venus-like conditions. On Earth, these chips can boost efficiency in wireless communication systems, help make drilling for oil safer, and enable more practical electric vehicles.
From developing harder chip materials to unlocking new planetary missions, Neudeck is proving that the future of electronics isn’t just about speed — it’s about survival.
Hydrogen sensors that could go the distance on other worlds
Gary Hunter helped develop a hydrogen sensor so advanced it’s being considered for a future mission to Titan, Saturn’s icy moon. These and a range of other sensors he’s helped developed have applications that go beyond space exploration, such as factory floors here on Earth.
With new missions on the horizon and smarter sensors in development, Hunter is still pushing the boundaries of what NASA technology can do. Whether it’s Titan, the surface of Venus, or somewhere we haven’t dreamed of yet, this work could help shape the way to get there.
Advanced materials research to make travel safer
Advanced materials, such as foams and composites, are key to unlocking the next generation of manufacturing. From space exploration to industry, Erik Weiser spent years contributing his expertise to the development of polymers, ceramics, metals, nanomaterials, and more. He is named on more than 20 patents. During this time, he provided his foam expertise to the Space Shuttle Columbia accident investigation, the Shuttle Discovery Return-to-Flight Investigation and numerous teams geared toward improving the safety of the shuttle.
Today, Weiser serves as director of the Facilities and Real Estate Division at NASA Headquarters, overseeing the foundation of NASA’s missions. Whether it’s advancing research or optimizing real estate across the agency, he’s helping launch the future, one facility at a time.
Want to learn more about NASA’s game changing innovations? Visit the NASA Inventors Hall of Fame.
Read More Share
Details
Last Updated May 09, 2025 Related Terms
Technology Technology Transfer Technology Transfer & Spinoffs Explore More
3 min read Key Portion of NASA’s Roman Space Telescope Clears Thermal Vacuum Test
Article 2 days ago 4 min read NASA Enables SPHEREx Data Return Through Commercial Partnership
Article 3 days ago 6 min read NASA Data Helps Map Tiny Plankton That Feed Giant Right Whales
In the waters off New England, one of Earth’s rarest mammals swims slowly, mouth agape.…
Article 4 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.