Jump to content

Live Views of Starman


SpaceX

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      LIVE LAUNCH OF ARIANE 6
    • By NASA
      Live Video from the International Space Station (Official NASA Stream)
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Moving across a background of stars, the six red dots in this composite picture indicate the location of six sequential detections of the first near-Earth object discovered by NEOWISE after the spacecraft came out of hibernation in 2013: the asteroid 2013 YP139. The inset shows a zoomed-in view of one of the detections.NASA/JPL-Caltech Observed by NASA’s WISE mission, this image shows the entire sky seen in infrared light. Running through the center of the image and seen predominantly in cyan are the stars of the Milky Way. Green and red represent interstellar dust.NASA/JPL-Caltech/UCLA NASA’s near-Earth-object-hunting mission NEOWISE is nearing its conclusion. But its work will carry on with NASA’s next-generation infrared mission: NEO Surveyor.
      After more than 14 successful years in space, NASA’s NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer) mission will end on July 31. But while the mission draws to a close, another is taking shape, harnessing experience gained from NEOWISE: NASA’s NEO Surveyor (Near Earth Object Surveyor), the first purpose-built infrared space telescope dedicated to hunting hazardous near-Earth objects. Set for launch in late 2027, it’s a major step forward in the agency’s planetary defense strategy.
      “After developing new techniques to find and characterize near-Earth objects hidden in vast quantities of its infrared survey data, NEOWISE has become key in helping us develop and operate NASA’s next-generation infrared space telescope. It is a precursor mission,” said Amy Mainzer, principal investigator of NEOWISE and NEO Surveyor at the University of California, Los Angeles. “NEO Surveyor will seek out the most difficult-to-find asteroids and comets that could cause significant damage to Earth if we don’t find them first.”
      Seen here in a clean room at the Space Dynamics Laboratory in Logan, Utah, the WISE mission’s telescope is worked on by engineers. Avionics hardware and solar panels would later be attached before the spacecraft’s launch on Dec. 14, 2009. SDL WISE Beginnings
      NEOWISE’s end of mission is tied to the Sun. About every 11 years, our star experiences a cycle of increased activity that peaks during a period called solar maximum. Explosive events, such as solar flares and coronal mass ejections, become more frequent and heat our planet’s atmosphere, causing it to expand. Atmospheric gases, in turn, increase drag on satellites orbiting Earth, slowing them down. With the Sun currently ramping up to predicted maximum levels of activity, and with no propulsion system for NEOWISE to keep itself in orbit, the spacecraft will soon drop too low to be usable.
      The infrared telescope is going out of commission having exceeded scientific objectives for not one, but two missions, beginning as WISE (Wide-field Infrared Survey Explorer).
      Managed by NASA’s Jet Propulsion Laboratory in Southern California, WISE launched in December 2009 with a six-month missionto scan the entire infrared sky. By July 2010, WISE had achieved this with far greater sensitivity than previous surveys, and NASA extended the mission until 2011.
      During this phase, WISE studied distant galaxies, outgassing comets, exploding white dwarf stars, and brown dwarfs. It identified tens of millions of actively feeding supermassive black holes. It also generated data on circumstellar disks — clouds of gas, dust, and rubble spinning around stars — that citizen scientists continue to mine through the Disk Detective project.
      In addition, it excelled at finding main belt asteroids, as well as near-Earth objects, and discovered the first known Earth Trojan asteroid. What’s more, the mission provided a census of dark, faint near-Earth objects that are difficult for ground-based telescopes to detect, revealing that these objects constitute a sizeable fraction of the near-Earth object population.
      Comet NEOWISE was discovered by its namesake mission on March 27, 2020, and became a dazzling celestial object visible in the Northern Hemisphere for several weeks that year. It was one of 25 comets discovered by the mission.SDL/Allison Bills Infrared Heritage
      Invisible to the naked eye, infrared wavelengths are emitted by warm objects. To keep the heat generated by WISE itself from interfering with its infrared observations, the spacecraft relied on cryogenic coolant. By the time the coolant had run out, WISE had mapped the sky twice, and NASA put the spacecraft into hibernation in February 2011.
      Soon after, Mainzer and her team proposed a new mission for the spacecraft: to search for, track, and characterize near-Earth objects that generate a strong infrared signal from their heating by the Sun.
      “Without coolant, we had to find a way to cool the spacecraft down enough to measure infrared signals from asteroids,” said Joseph Masiero, NEOWISE deputy principal investigator and a scientist at IPAC, a research organization at Caltech in Pasadena, California. “By commanding the telescope to stare into deep space for several months, we determined it would radiate only enough heat to reach lower temperatures that would still allow us to acquire high-quality data.” NASA reactivated the mission in 2013 under the Near-Earth Object Observations Program, a precursor to the agency’s current planetary defense program, with the new name NEOWISE.
      By repeatedly observing the sky from low Earth orbit, NEOWISE has made 1.45 million infrared measurements of over 44,000 solar system objects to date. That includes more than 3,000 NEOs, 215 of which the space telescope discovered. Twenty-five of those are comets, among them the famed comet NEOWISE that was visible in the night sky in the summer of 2020.
      “The spacecraft has surpassed all expectations and provided vast amounts of data that the science community will use for decades to come,” said Joseph Hunt, NEOWISE project manager at JPL. “Scientists and engineers who worked on WISE and through NEOWISE also have built a knowledge base that will help inform future infrared survey missions.”
      The space telescope will continue its survey until July 31. Then, on Aug. 8, mission controllers at JPL will send a command that puts NEOWISE into hibernation for the last time. Since its launch, NEOWISE’s orbit has been dropping closer to Earth. NEOWISE is expected to burn up in our planet’s atmosphere sometime between late 2024 and early 2025.
      More About the Mission
      NEOWISE and NEO Surveyor support the objectives of NASA’s Planetary Defense Coordination Office (PDCO) at NASA Headquarters in Washington. The NASA Authorization Act of 2005 directed NASA to discover and characterize at least 90% of the near-Earth objects more than 140 meters (460 feet) across that come within 30 million miles (48 million kilometers) of our planet’s orbit. Objects of this size can cause significant regional damage, or worse, should they impact the Earth.
      JPL manages and operates the NEOWISE mission for PDCO within the Science Mission Directorate. The Space Dynamics Laboratory in Logan, Utah, built the science instrument. Ball Aerospace & Technologies Corp. of Boulder, Colorado, built the spacecraft. Science data processing, archiving, and distribution is done at IPAC at Caltech. Caltech manages JPL for NASA.
      For more information about NEOWISE, visit:
      https://www.nasa.gov/neowise
      NASA’s NEOWISE Celebrates 10 Years, Plans End of Mission Classroom Activity: How to Explore an Asteroid Mission: Near-Earth Object Surveyor Media Contacts
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      Karen Fox / Charles Blue
      NASA Headquarters, Washington
      202-358-1600 / 202-802-5345
      karen.c.fox@nasa.gov / charles.e.blue@nasa.gov
      2024-094
      Share
      Details
      Last Updated Jul 01, 2024 Related Terms
      NEOWISE Comets Jet Propulsion Laboratory Near-Earth Asteroid (NEA) NEO Surveyor (Near-Earth Object Surveyor Space Telescope) Planetary Defense Planetary Defense Coordination Office WISE (Wide-field Infrared Survey Explorer) Explore More
      4 min read NASA Parachute Sensor Testing Could Make EPIC Mars Landings
      Article 4 days ago 5 min read NASA’s Mars Odyssey Captures Huge Volcano, Nears 100,000 Orbits
      Article 4 days ago 5 min read Detective Work Enables Perseverance Team to Revive SHERLOC Instrument
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA Science Live: Climate Edition - Rising Heat
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Credit: NASA/Ryan Fitzgibbons What do you give to an ocean that has everything? This year, for National Ocean Month, NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite— is gifting us a unique look at our home planet. The visualizations created with data from the satellite, which launched on Feb. 8, are already enhancing the ways that we view our seas and skies. 
      The PACE satellite views our entire planet every day, returning data at a cadence that allows scientists to track and monitor the rapidly changing atmosphere and ocean, including cloud formation, aerosol movement, and differences in microscopic ocean life over time.
      The visualization starts with a view of swaths of Earth from PACE’s Ocean Color Instrument. The Ocean Color Instrument observes Earth in ultraviolet, visible, and near infrared light — over 200 wavelengths. With this level of detail, scientists can now, from space, regularly identify specific communities of phytoplankton — tiny organisms floating near the surface of the ocean that serve as the center of the marine food web. This is a major advance, as different types of phytoplankton play different roles in ocean ecosystems and health.
      PACE orbits Earth in this visualization, exposing a swath of true color imagery. NASA’s Scientific Visualization Studio Zooming in, the visualization shows the ecosystems and surrounding atmosphere off the United States’ East Coast and The Bahamas on March 21. Like previous satellites, the Ocean Color Instrument can detect chlorophyll in the ocean, which indicates the presence and abundance of phytoplankton. The Ocean Color Instrument adds to this by allowing scientists to determine the types of phytoplankton present, such as the three different types of phytoplankton identified in the visualization.
      False color data visualization of phytoplankton (Picoeukaryotes and Prochlorococcus), as observed by PACE’s Ocean Color instrument (OCI).NASA’s Scientific Visualization Studio The portion of the swirls in green indicate the presence of picoeukaryotes, organisms which are smaller than 0.3 micrometers in size — 30 times smaller than the width of a human hair. In light blue are prochlorococcus, the smallest known organism to turn sunlight into energy (photosynthesis); they account for a major fraction of all photosynthesis that occurs in the ocean. The portion of the bloom in bright pink indicates synechococcus, a phytoplankton group that can color the water light pink when many are present in a small area.
      False color data visualization of phytoplankton (Picoeukaryotes and Synechococcus), as observed by PACE’s OCI instrument. NASA’s Scientific Visualization Studio These are just three of the thousands of types of phytoplankton, and just the start of what the Ocean Color Instrument will be able to identify.
      The PACE satellite’s two polarimeters, Hyper-Angular Rainbow Polarimeter #2 (HARP2) and Spectro-polarimeter for Planetary Exploration one (SPEXone), provide a unique view of Earth’s atmosphere, helping scientists learn more about clouds and small particles called aerosols. The polarimeters measure light that reflects off of these particles. By learning more about the interactions between clouds and aerosols, these data will ultimately help make climate models more accurate. Additionally, aerosols can degrade air quality, so monitoring their properties and movement is important for human health.
      Aerosols, as observed by PACE’s HARP2 and SPEXone instruments.NASA’s Scientific Visualization Studio In the visualization, the large swath of HARP2 data shows the concentration of aerosols in the air for that particular day. These data — a measure of the light scattering and absorbing properties of aerosols — help scientists not only locate the aerosols, but identify the type. Near the coast, the aerosols are most likely smoke from fires in the U.S. southeast. Adding detail to the visualization and the science, the thin swath of SPEXone data furthers the information by showing the aerosol particle size.
      Over the next year, PACE scientists aim to create the first global maps of phytoplankton communities and glean new insights into how fisheries and aquatic resources are responding to Earth’s changing climate.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) spacecraft was specifically designed to study the invisible universe of Earth’s sea and sky from the vantage point of space. We’ve measured 4-6 colors of the rainbow for decades, which has enabled us to “see” phytoplankton from space through the lens of its primary photosynthetic pigment, chlorophyll-a. PACE’s primary instrument is the first of its kind to measure all the colors of the rainbow, every day, everywhere. That means we can identify the type of phytoplankton behind the chlorophyll-a. Different types of phytoplankton have different effects on the food web, on water management, and on the climate, via their impact on the carbon cycle.NASA's Scientific Visualization Studio By Erica McNamee
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Jun 07, 2024 EditorKate D. RamsayerContactErica McNameeerica.s.mcnamee@nasa.govLocationGoddard Space Flight Center Related Terms
      Earth Aerosols Goddard Space Flight Center Oceans PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Explore More
      4 min read NASA’s PACE Data on Ocean, Atmosphere, Climate Now Available
      Article 2 months ago 5 min read Early Adopters of NASA’s PACE Data to Study Air Quality, Ocean Health
      From the atmosphere down to the surface of the ocean, data from NASA’s PACE (Plankton,…
      Article 2 months ago 6 min read NASA’s PACE To Investigate Oceans, Atmosphere in Changing Climate
      Earth’s oceans and atmosphere are changing as the planet warms. Some ocean waters become greener…
      Article 5 months ago View the full article
  • Check out these Videos

×
×
  • Create New...