Jump to content

Recommended Posts

Posted
low_STSCI-H-p2009a-k-1340x520.png

What do astronomers do when a planet they are studying suddenly seems to disappear from sight? In the legendary Star Wars galaxy (you know, "a long time ago and far, far away") the planet might have been the victim of the evil empire's planet-zapping Death Star. But this is pretty improbable in our own cosmic back yard. The missing-in-action planet was last seen orbiting the star Fomalhaut, just 25 light-years away. (In fact, Fomalhaut is so close to us that it's one of the brightest stars in the sky, in the constellation of Pisces Austrinus, the Southern Fish.)

A team of researchers from the University of Arizona believe a full-grown planet never existed in the first place. Instead, they concluded that the Hubble Space Telescope was looking at an expanding cloud of very fine dust particles from two icy bodies that smashed into each other. Hubble came along too late to witness the suspected collision, but may have captured its aftermath. This happened in 2008, when astronomers eagerly announced that Hubble took its first image of a planet orbiting another star. The diminutive-looking object appeared as a dot next to a vast ring of icy debris encircling Fomalhaut. In following years, they tracked the planet along its trajectory. But over time the dot, based on their analysis of Hubble data, got fainter until it simply dropped out of sight, say the researchers, as they pored through the Hubble archival data.

Asteroid families in our own solar system are considered fossil relics of such collisions which happened here billions of years ago, in the solar system's rambunctious youth. But no such cataclysm has ever been seen happening around another star. Why? In the case of Fomalhaut, such smashups are estimated to happen once every 200,000 years. Therefore, Hubble astronomers may have been lucky enough to be looking at the right place at the right time.

Follow-up observations will likely be needed to test this startling conclusion.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Captures Cotton Candy Clouds
      This NASA/ESA Hubble Space Telescope image features a cloudscape in the Large Magellanic Cloud., a dwarf satellite galaxy of the Milky Way. ESA/Hubble & NASA, C. Murray This NASA/ESA Hubble Space Telescope image features a sparkling cloudscape from one of the Milky Way’s galactic neighbors, a dwarf galaxy called the Large Magellanic Cloud. Located 160,000 light-years away in the constellations Dorado and Mensa, the Large Magellanic Cloud is the largest of the Milky Way’s many small satellite galaxies.
      This view of dusty gas clouds in the Large Magellanic Cloud is possible thanks to Hubble’s cameras, such as the Wide Field Camera 3 (WFC3) that collected the observations for this image. WFC3 holds a variety of filters, and each lets through specific wavelengths, or colors, of light. This image combines observations made with five different filters, including some that capture ultraviolet and infrared light that the human eye cannot see.
      The wispy gas clouds in this image resemble brightly colored cotton candy. When viewing such a vividly colored cosmic scene, it is natural to wonder whether the colors are ‘real’. After all, Hubble, with its 7.8-foot-wide (2.4 m) mirror and advanced scientific instruments, doesn’t bear resemblance to a typical camera! When image-processing specialists combine raw filtered data into a multi-colored image like this one, they assign a color to each filter. Visible-light observations typically correspond to the color that the filter allows through. Shorter wavelengths of light such as ultraviolet are usually assigned blue or purple, while longer wavelengths like infrared are typically red.
      This color scheme closely represents reality while adding new information from the portions of the electromagnetic spectrum that humans cannot see. However, there are endless possible color combinations that can be employed to achieve an especially aesthetically pleasing or scientifically insightful image.

      Watch “How Hubble Images are Made” on YouTube

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated May 15, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Emission Nebulae Goddard Space Flight Center Nebulae The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Nebulae



      Science Behind the Discoveries



      Hubble’s Night Sky Challenge


      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s X-59 quiet supersonic research aircraft is seen during its “aluminum bird” systems testing at Lockheed Martin’s Skunk Works facility in Palmdale, California. The test verified how the aircraft’s hardware and software work together, responding to pilot inputs and handling injected system failures. Lockheed Martin / Garry Tice NASA’s X-59 quiet supersonic research aircraft successfully completed a critical series of tests in which the airplane was put through its paces for cruising high above the California desert – all without ever leaving the ground.
      “The idea behind these tests is to command the airplane’s subsystems and flight computer to function as if it is flying,” said Yohan Lin, the X-59’s lead avionics engineer at NASA’s Armstrong Flight Research Center in Edwards, California.
      The goal of ground-based simulation testing was to make sure the hardware and software that will allow the X-59 to fly safely are properly working together and able to handle any unexpected problems.
      Any new aircraft is a combination of systems, and identifying the little adjustments required to optimize performance is an important step in a disciplined approach toward flight.
      “We thought we might find a few things during the tests that would prompt us to go back and tweak them to work better, especially with some of the software, and that’s what we wound up experiencing. So, these tests were very helpful,” Lin said.
      Completing the tests marks another milestone off the checklist of things to do before the X-59 makes its first flight this year, continuing NASA’s Quesst mission to help enable commercial supersonic air travel over land.
      Simulating the Sky
      During the testing, engineers from NASA and contractor Lockheed Martin turned on most of the X-59’s systems, leaving the engine off. For example, if the pilot moved the control stick a certain way, the flight computer moved the aircraft’s rudder or other control surfaces, just as it would in flight.
      At the same time, the airplane was electronically connected to a ground computer that sends simulated signals – which the X-59 interpreted as real – such as changes in altitude, speed, temperature, or the health of various systems.
      Sitting in the cockpit, the pilot “flew” the aircraft to see how the airplane would respond.
      “These were simple maneuvers, nothing too crazy,” Lin said. “We would then inject failures into the airplane to see how it would respond. Would the system compensate for the failure? Was the pilot able to recover?”
      Unlike in typical astronaut training simulations, where flight crews do not know what scenarios they might encounter, the X-59 pilots mostly knew what the aircraft would experience during every test and even helped plan them to better focus on the aircraft systems’ response.
      NASA test pilot James Less sits in the cockpit of the X-59 quiet supersonic research aircraft as he participates in a series of “aluminum bird” systems tests at Lockheed Martin’s Skunk Works facility in Palmdale, California.Lockheed Martin / Garry Tice Aluminum vs. Iron
      In aircraft development, this work is known as “iron bird” testing, named for a simple metal frame on which representations of the aircraft’s subsystems are installed, connected, and checked out.
      Building such a testbed is a common practice for development programs in which many aircraft will be manufactured. But since the X-59 is a one-of-a-kind airplane, officials decided it was better and less expensive to use the aircraft itself.
      As a result, engineers dubbed this series of exercises “aluminum bird” testing, since that’s the metal the X-59 is mostly made of.
      So, instead of testing an “iron bird” with copies of an aircraft’s systems on a non-descript frame, the “aluminum bird” used the actual aircraft and its systems, which in turn meant the test results gave everyone higher confidence in the design,
      “It’s a perfect example of the old tried and true adage in aviation that says ‘Test what you fly. Fly what you test,’” Lin said.
      Still Ahead for the X-59
      With aluminum bird testing in the rearview mirror, the next milestone on the X-59’s path to first flight is take the airplane out on the taxiways at the airport adjacent to Lockheed Martin’s Skunk Works facility in Palmdale, California, where the X-59 was built. First flight would follow those taxi tests.
      Already in the X-59’s logbook since the fully assembled and painted airplane made its public debut in January 2024:
      A Flight Readiness Review in which a board of independent experts from across NASA completed a study of the X-59 project team’s approach to safety for the public and staff during ground and flight testing. A trio of important structural tests and critical inspections that included “shaking” the airplane to make sure there were no unexpected problems from the vibrations. Firing up the GE Aerospace jet engine for the first time after installation into the X-59, including a series of tests of the engine running with full afterburner. Checking the wiring that ties together the X-59’s flight computer, electronic systems, and other hardware to be sure there were no concerns about electromagnetic interference. Testing the aircraft’s ability to maintain a certain speed while flying, essentially a check of the X-59’s version of cruise control. The X-59 Tests in 59
      Watch this video about the X-59 aluminum bird testing. It only takes a minute. Well, 59 seconds to be precise. About the Author
      Jim Banke
      Managing Editor/Senior WriterJim Banke is a veteran aviation and aerospace communicator with more than 40 years of experience as a writer, producer, consultant, and project manager based at Cape Canaveral, Florida. He is part of NASA Aeronautics' Strategic Communications Team and is Managing Editor for the Aeronautics topic on the NASA website.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      4 min read Top Prize Awarded in Lunar Autonomy Challenge to Virtually Map Moon’s Surface
      Article 13 hours ago 3 min read NASA Selects Student Teams for Drone Hurricane Response and Cybersecurity Research
      Article 16 hours ago 1 min read NASA Glenn Showcases Stirling Engine Technology at Piston Powered Auto-Rama
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated May 15, 2025 EditorJim BankeContactMatt Kamletmatthew.r.kamlet@nasa.gov Related Terms
      Aeronautics Advanced Air Vehicles Program Aeronautics Research Mission Directorate Ames Research Center Armstrong Flight Research Center Commercial Supersonic Technology Glenn Research Center Integrated Aviation Systems Program Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Quesst: The Vehicle Supersonic Flight View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Pinpoints Young Stars in Spiral Galaxy
      This NASA/ESA Hubble Space Telescope image features the spiral galaxy NGC 1317. ESA/Hubble & NASA, J. Lee and the PHANGS-HST Team In this image, the NASA/ESA Hubble Space Telescope peers into the spiral galaxy NGC 1317 in the constellation Fornax, located more than 50 million light-years from Earth. Visible in this galaxy image is a bright blue ring that hosts hot, young stars. NGC 1317 is one of a pair, but its rowdy larger neighbor, NGC 1316, lies outside Hubble’s field of view. Despite the absence of its neighboring galaxy, this image finds NGC 1317 accompanied by two objects from very different parts of the universe. The bright point ringed with a crisscross pattern is a star from our own galaxy surrounded by diffraction spikes, whereas the redder elongated smudge is a distant galaxy lying far beyond NGC 1317.
      The data presented in this image are from a vast observing campaign of hundreds of observations from Hubble’s Wide Field Camera 3 and Advanced Camera for Surveys. Combined with data from the ALMA array in the Atacama Desert, these observations help astronomers chart the connections between vast clouds of cold gas and the fiercely hot, young stars that form within them. ALMA’s unparalleled sensitivity at long wavelengths identified vast reservoirs of cold gas throughout the local universe, and Hubble’s sharp vision pinpointed clusters of young stars, as well as measuring their ages and masses.
      Often the most exciting astronomical discoveries require this kind of telescope teamwork, with cutting-edge facilities working together to provide astronomers with information across the electromagnetic spectrum. The same applies to Hubble’s observations that laid the groundwork for the NASA/ESA/CSA James Webb Space Telescope’s scientific observations.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated May 14, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Hubble Science Highlights



      Science Behind the Discoveries


      View the full article
    • By NASA
      NASA Glenn Research Center senior materials research engineer Kim de Groh, who conducted research for Hubble Space Telescope servicing missions, shared her experiences during a presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on Thursday, May 8, 2025. Credit: NASA/Dennis Brown  April 24 marked the 35th anniversary of the launch of NASA’s Hubble Space Telescope. The iconic space observatory remains a household name —the most well-recognized and scientifically productive telescope in history. Engineers at NASA’s Glenn Research Center in Cleveland played a significant role in how the telescope functions today.  
      NASA’s Glenn Research Center researchers Kim de Groh, left, and Joyce Dever conducted research for Hubble Space Telescope servicing missions. De Groh shared her experiences during a presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on Thursday, May 8, 2025. Credit: NASA/Sara Lowthian-Hanna  NASA Glenn researchers assisted in all five Hubble servicing missions by testing damaged insulation, determining why it degraded in space, and recommending replacement materials.  
      One of those researchers, Kim de Groh, senior materials research engineer, shared some of that research in a special presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on May 8. She chronicled her Hubble experience with a presentation, a show-and-tell with samples directly from the telescope, and a Q&A addressing the audience’s Hubble-related questions. 
      Return to Newsletter Explore More
      1 min read NASA Glenn Hosts Slovenian Delegation and Ohio Governor’s Office
      Article 48 seconds ago 1 min read Specialty NASA Glenn License Plates Available  
      Article 1 min ago 1 min read NASA Glenn Shows Students Temperature-Cooling Technology
      Article 2 mins ago View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Comes Face-to-Face with Spiral’s Arms
      This Hubble Space Telescope image showcases the spiral galaxy NGC 3596. ESA/Hubble & NASA, D. Thilker The spiral galaxy NGC 3596 is on display in this NASA/ESA Hubble Space Telescope image that incorporates six different wavelengths of light. NGC 3596 is situated 90 million light-years from Earth in the constellation Leo, the Lion. British astronomer Sir William Herschel first documented the galaxy in 1784.
      NGC 3596 appears almost perfectly face-on when viewed from Earth, showcasing the galaxy’s neatly wound spiral arms. These bright arms hold concentrations of stars, gas, and dust that mark the area where star formation is most active, illustrated by the brilliant pink star-forming regions and young blue stars tracing NGC 3596’s arms.
      What causes these spiral arms to form? It’s a surprisingly difficult question to answer, partly because spiral galaxies are so diverse. Some have clear spiral arms, while others have patchy, feathery arms. Some have prominent bars across their centers, while others have compact, circular nuclei. Some have close neighbors, while others are isolated.
      Early ideas of how spiral arms formed stumped astronomers with the ‘winding problem’. If a galaxy’s spiral arms are coherent structures, its arms would wind tighter and tighter as the galaxy spins, until the arms are no longer visible. Now, researchers believe that spiral arms represent a pattern of high-density and low-density areas rather than a physical structure. As stars, gas, and dust orbit within a galaxy’s disk, they pass in and out of the spiral arms. Much like cars moving through a traffic jam, these materials slow down and bunch up as they enter a spiral arm, before emerging and continuing their journey through the galaxy.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated May 09, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble’s 35th Anniversary



      Hubble’s Night Sky Challenge


      View the full article
  • Similar Videos

  • Check out these Videos

×
×
  • Create New...