Jump to content

F9R First Flight Test | 250m


SpaceX

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The distorted spiral galaxy at center, the Penguin, and the compact elliptical at left, the Egg, are locked in an active embrace. This near- and mid-infrared image combines data from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument), and marks the telescope’s second year of science. Webb’s view shows that their interaction is marked by a glow of scattered stars represented in blue. Known jointly as Arp 142, the galaxies made their first pass by one another between 25 and 75 million years ago, causing “fireworks,” or new star formation, in the Penguin. The galaxies are approximately the same mass, which is why one hasn’t consumed the other.NASA, ESA, CSA, STScI To celebrate the second science anniversary of NASA’s James Webb Space Telescope, the team has released a near- and mid-infrared image on July 12, 2024, of two interacting galaxies: The Penguin and the Egg.
      Webb specializes in capturing infrared light – which is beyond what our own eyes can see – allowing us to view and study these two galaxies, collectively known as Arp 142. Their ongoing interaction was set in motion between 25 and 75 million years ago, when the Penguin (individually cataloged as NGC 2936) and the Egg (NGC 2937) completed their first pass. They will go on to shimmy and sway, completing several additional loops before merging into a single galaxy hundreds of millions of years from now.
      Learn more about the Penguin and the Egg.
      Image Credit: NASA, ESA, CSA, STScI
      Text Credit: NASA Webb Mission Team
      View the full article
    • By Space Force
      The portrait unveiling marks one of many historic firsts for a military service that was established less than five years prior, Dec. 20, 2019.

      View the full article
    • By NASA
      When the first humans travel to the Red Planet, they will need to know how to repair and maintain equipment, grow their own food, and stay healthy, all while contending with Earth-to-Mars communication delays. They must also find ways to build comradery and have fun. 

      The first all-volunteer CHAPEA (Crew Health and Performance Exploration Analog) crew accomplished all of that and more during their 378-day analog mission on the surface of Mars.  

      Living in the isolated Mars Dune Alpha, a 3D-printed, 1,700-square-foot habitat, crew members Kelly Haston, Ross Brockwell, Nathan Jones, and Anca Selariu faced the rigors of a simulated Mars expedition, enduring stressors akin to those of a real mission to the Red Planet. They also celebrated holidays and birthdays, gave each other haircuts, and found moments of levity in isolation. Their journey will help scientists understand the challenges of deep space missions and offer invaluable insights into the resilience of the human spirit. 
      NASA’s CHAPEA (Crew Health and Performance Exploration Analog) crew member Kelly Haston greets Deputy Director of Flight Operations Kjell Lindgren and Johnson Space Center Deputy Director Stephen Koerner at the habitat’s door. NASA/Josh Valcarcel As the crew concluded their journey on July 6, NASA astronaut and Deputy Director of Flight Operations Kjell Lindgren opened the habitat door and welcomed them home. 

      “The crew and their families have committed a year of their lives in service to NASA, the country, and humanity’s exploration of space. Thank you to for committing yourselves to research that will enable our future exploration of space,” he said. “Your fingerprints are going to be an indelible part of those first footprints on Mars.” 

      The CHAPEA crew brought their diverse backgrounds and experiences to the mission, collaborating with NASA’s scientists and engineers to collect data that will provide insight into maintaining crew health and performance for future missions to Mars. 
      PHOTO DATE: July 06, 2024 LOCATION: Bldg. 220 – CHAPEA Habitat SUBJECT: ASA Crew Health and Performance Exploration Analog (CHAPEA) Mars Analog Mission 1 Egress Event with crew Anca Selariu, Nathan Jones, Kelly Haston, Ross Brockwell. PHOTOGRAPHER: NASA/Josh ValcarcelNASA/Josh Valcarcel Kelly Haston: Mission Commander and Pioneering Scientist 

      Haston, the mission commander, is a research scientist who builds human disease models. She has spearheaded innovative stem cell-based projects, deriving multiple cell types for work in infertility, liver disease, and neurodegeneration. Her role was pivotal in maintaining crew morale and ensuring the success of daily operations. 
      She highlighted the importance of teamwork and adaptability in a mission with such high stakes.
      “We had to rely on each other and our training to navigate the challenges we faced,” she said. “Every day brought new obstacles, but also new opportunities for growth and learning.” 

      Nathan Jones: Medical Officer and Expert Communicator 

      Jones, the crew medical officer, used his emergency and international medicine experience to tackle the unique challenges of the Mars mission. His expertise in problem-solving and effective communication in a time-sensitive and resource-limited environment was essential due to the approximately one-hour transmission delay. “Even something as simple as when to communicate is important,” said Jones. The crew had to consider what observations were essential to report to each other or Mission Control to avoid overburdening the team or unnecessarily using the limited bandwidth to Earth. 

      “Everything we do in CHAPEA is touched by the heroes working on the ground at NASA,” he said. “We couldn’t ask for a better experience or better people to work with.” 

      The experience evolved into a journey of personal growth for Jones. “I am constantly looking forward, planning for the future,” he said. “I learned to take time to enjoy the current season and be patient for the coming ones.” 
      He also discovered a new hobby: art. “I have even surprised myself with how well some of my sketches have turned out,” he said. 

      Anca Selariu: Microbiologist and Innovative Thinker 

      Anca Selariu brought expertise as a microbiologist in the U.S. Navy, with a background in viral vaccine discovery, prion transmission, gene therapy development, and infectious disease research management. 

      Selariu expressed that she owes much to the Navy, including her involvement in CHAPEA, as it helped shape her both personally and professionally. “I hope to bring back a fresh perspective, along with a strong inclination to think differently about a problem, and test which questions are worth asking before we set out answering them,” she said.  

      Reflecting on the mission, Selariu said, “Every day seemed to be a new revelation about something; about Earth, about art, about humans, about cultures, about the history of life in the universe – what little we know of it.” 
      She added, “As much as I appreciate having information at my fingertips, I will miss the luxury of being unplugged in a world that now validates humans by their digital presence.”  

      Ross Brockwell: Structural Engineer and Problem Solver 

      Brockwell, the mission’s flight engineer, focused on infrastructure, building design, and organizational leadership. His structural engineering background influenced his approach to problem solving in the CHAPEA habitat. 
      “An engineering perspective leads you to build an understanding of how things will react and interact, anticipate possible failure points, and ensure redundancy and contingency planning,” he said. 

      That mindset helped the crew develop creative solutions to mission challenges, such as using a 3D printer to design part adapters and tools and find ways to connect as a team. “Several things we wanted to do for fun required innovation, one being developing a bracket so we could safely and securely mount our mini-basketball hoop,” he said. 
      He advises Artemis Generation members interested in contributing to future analog missions to think about systems engineering theory and learn to develop and integrate whole systems while solving individual challenges.  

      Brockwell believes the most important attributes for a CHAPEA crew member are imagination and a strong sense of wonder. “Of course, one needs to have patience, self-control, emotional regulation, and a sense of humor,” he said. “I would also add perspective, which means understanding the importance of exploration missions on behalf of humankind and appreciating being part of something greater than oneself.” 
      The CHAPEA crew is “back on Earth” after their 378-day mission inside the simulated Martian habitat. NASA /Josh Valcarcel A Vision for the Future 
      As the first CHAPEA mission concludes, the data collected and experiences shared by the crew will pave the way for future explorations, bringing humanity one step closer to setting foot on Mars.  
      “One of the biggest things I have learned on this long-duration mission is that we should never underestimate the effects of small gains over time,” said Jones. “Be willing to do the hard things now and it may make all the difference for the future.” 
      Selariu emphasized the importance of interdisciplinary collaboration in upcoming space missions. “What everyone at CHAPEA seems to have in common is passion for space and drive to pursue it no matter the challenges, inconvenience, and personal sacrifices.” 
      Brockwell looks forward to missions to the Red Planet becoming a reality. “It still fills me with awe and excitement to think that one day there will be people on the surface of other worlds, overcoming immense challenges and expanding the existence and awareness of life from Earth.” 
      View the full article
    • By NASA
      ESA’s (European Space Agency) Ariane 6 rocket launches NASA’s CURIE CubeSat from Europe’s Spacesport, the Guiana Space Center in Kourou, French Guiana on Tuesday, July 9, 2024. Photo credit: ESA/S. Corvaja NASA launched CURIE (CubeSat Radio Interferometry Experiment) as a rideshare payload on the inaugural flight of ESA’s (European Space Agency) Ariane 6 rocket, which launched at 4 p.m. GFT on July 9 from Europe’s Spaceport, the Guiana Space Center in Kourou, in French Guiana.
      Designed by a team from the University of California, Berkeley, CURIE will use radio interferometry to study the primary drivers of space weather. 
      CubeSats are built using standardized units, with one unit, or 1U, measuring about 10 centimeters in length, width, and height. The two-satellite CURIE mission launched as a 6U before separating into two separate spacecraft, each a 3U. The spacecraft will provide two separate vantage points to measure the same radio waves coming from the Sun and other sources in the sky. 
      NASA’s CubeSat Launch Initiative selected CURIE in 2020 during the initiative’s 11th round of applications. NASA’s Launch Services Program, in collaboration with ESA, designated CURIE as one of eleven payloads supplied by space agencies, commercial companies, and universities for the first flight of ESA’s Ariane 6 rocket. 
      Image Credit:  ESA/M. Pédoussaut
      View the full article
    • By NASA
      The inaugural CHAPEA (Crew Health and Performance Exploration Analog) crew is “back on Earth” after walking out of their simulated Martian habitat at NASA’s Johnson Space Center in Houston on July 6. The first of three simulated missions, CHAPEA Mission 1 was designed to help scientists, engineers, and mission planners better understand how living on another world could affect human health and performance.
      Kelly Haston, commander, Ross Brockwell, flight engineer, Nathan Jones, medical officer, and Anca Selariu, science officer, lived and worked in an isolated 1,700-square-foot, 3D-printed habitat to support human health and performance research to prepare for future missions to Mars.
      “Congratulations to the crew of CHAPEA Mission 1 on their completion of a year in a Mars-simulated environment,” said NASA Administrator Bill Nelson. “Through the Artemis missions, we will use what we learn on and around the Moon to take the next giant leap: sending the first astronauts to Mars. The CHAPEA missions are critical to developing the knowledge and tools needed for humans to one day live and work on the Red Planet.”
      The crew stepped out of the habitat and back into the arms of family and friends after a 378-day simulated Mars surface mission that began June 25, 2023.
      This high-fidelity simulation involved the crew carrying out different types of mission objectives, including simulated “marswalks,” robotic operations, habitat maintenance, exercise, and crop growth. The crew also faced intentional environmental stressors in their habitat such as resource limitations, isolation, and confinement. For the next two weeks, the volunteers will complete post-mission data collection activities before returning home.
      “We planned the last 378 days with many of the challenges crews could face on Mars and this crew dedicated their lives over that time to achieve these unprecedented operational objectives,” said CHAPEA Principal Investigator Grace Douglas. “I am looking forward to diving into the data we have gathered, preparing for CHAPEA Mission 2 and eventually, a human presence on Mars.”
      As NASA works to establish a long-term presence for scientific discovery and exploration on the Moon through the Artemis campaign, analog missions like CHAPEA provide scientific data to validate systems and develop technological solutions for future missions to Mars.
      Two additional one-year CHAPEA missions are planned, with the next targeted to begin in 2025. The subsequent missions will be nearly identical, allowing researchers to collect data from more participants to expand the dataset and provide a broader perspective on the impacts of Mars-realistic resource limitations, isolation and confinement on human health and performance.
      NASA has several other avenues for gathering isolation research, including the Human Exploration Research Analog, Antarctica, and other analogs, as well as human spaceflight missions to the International Space Station to ensure key research goals can be completed to inform future human missions to the Moon and Mars.
      The CHAPEA simulated missions are unique because they test the impacts of extended isolation and confinement with the addition of Mars-realistic time delays of communicating to Earth – up to 44-minutes roundtrip – along with resource limitations relevant to Mars, including a more limited food system that can be supported on the space station and in other analogs.
      To view the ceremony of crew exiting their habitat, visit here.
      Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.
      Learn more about CHAPEA at:
      www.nasa.gov/humans-in-space/chapea/
      View the full article
  • Check out these Videos

×
×
  • Create New...