Jump to content

MISSION HIGHLIGHTS | SpaceX CRS-2 Mission to Space Station


SpaceX

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Air Marshal Paul Godfrey took the position June 17 and will serve the U.S. Space Force as assistant chief of Space Operations for Future Concepts and Partnerships after three years as the first commander of the U.K. Space Command.

      View the full article
    • By European Space Agency
      Video: 00:02:27 The first launch of Ariane 6 is a collective success for all of Europe. First flights are no easy thing, but Europe now has a heavy-lift rocket able to launch any mission into any orbit. From Earth observation satellites that monitor our changing climate, predict the weather and assist emergency responders during disasters; to communication and navigation systems that keep Europeans in touch and in the right place; to deep space telescopes and explorers expanding our understanding of the Universe and our place within it – Ariane 6 has restored Europe’s autonomous access to space.
      “Thank you, not only to the ESA team but everyone around Europe who contributed to this moment in history,” said Tony Tolker-Nielsen, ESA’s Director of Space Transportation, the day after Ariane 6’s first flight. “This is a major industrial project, with contributions from 13 countries and hundreds of companies. Like a symphonic orchestra, all instruments are vital to play the perfect music”.
      Ariane 6 launched on 9 July 2024 from Europe's Spaceport in French Guiana at 16:00 local time (20:00 BST, 21:00 CEST). Europe’s newest heavy-lift rocket, it is designed to provide great power and flexibility at a lower cost than its predecessors. The launcher’s configuration – with an upgraded main stage, a choice of either two or four powerful boosters and a new restartable upper stage – will provide Europe with greater efficiency and possibility as it can launch multiple missions into different orbits on a single flight, while its upper stage will deorbit itself at the end of mission.
      Find more videos from Space Team Europe.
      View the full article
    • By NASA
      The inaugural CHAPEA (Crew Health and Performance Exploration Analog) crew is “back on Earth” after walking out of their simulated Martian habitat at NASA’s Johnson Space Center in Houston on July 6. The first of three simulated missions, CHAPEA Mission 1 was designed to help scientists, engineers, and mission planners better understand how living on another world could affect human health and performance.
      Kelly Haston, commander, Ross Brockwell, flight engineer, Nathan Jones, medical officer, and Anca Selariu, science officer, lived and worked in an isolated 1,700-square-foot, 3D-printed habitat to support human health and performance research to prepare for future missions to Mars.
      “Congratulations to the crew of CHAPEA Mission 1 on their completion of a year in a Mars-simulated environment,” said NASA Administrator Bill Nelson. “Through the Artemis missions, we will use what we learn on and around the Moon to take the next giant leap: sending the first astronauts to Mars. The CHAPEA missions are critical to developing the knowledge and tools needed for humans to one day live and work on the Red Planet.”
      The crew stepped out of the habitat and back into the arms of family and friends after a 378-day simulated Mars surface mission that began June 25, 2023.
      This high-fidelity simulation involved the crew carrying out different types of mission objectives, including simulated “marswalks,” robotic operations, habitat maintenance, exercise, and crop growth. The crew also faced intentional environmental stressors in their habitat such as resource limitations, isolation, and confinement. For the next two weeks, the volunteers will complete post-mission data collection activities before returning home.
      “We planned the last 378 days with many of the challenges crews could face on Mars and this crew dedicated their lives over that time to achieve these unprecedented operational objectives,” said CHAPEA Principal Investigator Grace Douglas. “I am looking forward to diving into the data we have gathered, preparing for CHAPEA Mission 2 and eventually, a human presence on Mars.”
      As NASA works to establish a long-term presence for scientific discovery and exploration on the Moon through the Artemis campaign, analog missions like CHAPEA provide scientific data to validate systems and develop technological solutions for future missions to Mars.
      Two additional one-year CHAPEA missions are planned, with the next targeted to begin in 2025. The subsequent missions will be nearly identical, allowing researchers to collect data from more participants to expand the dataset and provide a broader perspective on the impacts of Mars-realistic resource limitations, isolation and confinement on human health and performance.
      NASA has several other avenues for gathering isolation research, including the Human Exploration Research Analog, Antarctica, and other analogs, as well as human spaceflight missions to the International Space Station to ensure key research goals can be completed to inform future human missions to the Moon and Mars.
      The CHAPEA simulated missions are unique because they test the impacts of extended isolation and confinement with the addition of Mars-realistic time delays of communicating to Earth – up to 44-minutes roundtrip – along with resource limitations relevant to Mars, including a more limited food system that can be supported on the space station and in other analogs.
      To view the ceremony of crew exiting their habitat, visit here.
      Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.
      Learn more about CHAPEA at:
      www.nasa.gov/humans-in-space/chapea/
      View the full article
    • By NASA
      On July 8, 1994, space shuttle Columbia took to the skies on its 17th trip into space, on the second International Microgravity Laboratory (IML-2) mission. Six space agencies sponsored 82 life and microgravity science experiments. The seven-person crew consisted of Commander Robert D. Cabana, Pilot James D. Halsell, Payload Commander Richard J. Hieb, Mission Specialists Carl E. Walz, Leroy Chiao, and Donald A. Thomas, and Payload Specialist Chiaki Mukai representing the National Space Development Agency (NASDA) of Japan, now the Japan Aerospace Exploration Agency. Jean-Jacques H. Favier of the French space agency CNES served as a backup payload specialist. During their then-record setting 15-day shuttle flight, the international team of astronauts successfully completed the science program. They returned to earth on July 23.

      Left: The STS-65 crew patch. Middle: Official photo of the STS-65 crew of Richard J. Hieb, seated left, Robert D. Cabana, and Donald A. Thomas; Leroy Chiao, standing left, James D. Halsell, Chiaki Mukai of Japan, and Carl E. Walz. Right: The payload patch for the International Microgravity Laboratory-2.
      In August 1973, NASA and the European Space Research Organization, reorganized as the European Space Agency (ESA) in 1975, agreed to build a reusable laboratory called Spacelab to fly in the space shuttle’s cargo bay. As part of the agreement, ESA built two pressurized modules in addition to other supporting hardware. First flying on STS-9 in 1983, the 18-foot-long pressurized Spacelab module made its 10th flight on STS-65. In September 1992 NASA named Hieb as the IML-2 payload commander and Mukai and Favier as prime and backup payload specialists, respectively, adding Chiao and Thomas as mission specialists in October 1992, finally designating Cabana, Halsell, and Walz as the orbiter crew in August 1993. For Cabana and Hieb, both selected as astronauts in 1985, STS-65 marked their third spaceflight.  NASA selected Halsell, Walz, Chiao, and Thomas in 1990, in the class nicknamed The Hairballs. Walz would make his second flight, with the other three making their first. NASDA selected Mukai in 1985 and she holds the distinction as the first Japanese woman in space. Chiao and Mukai as part of the STS-65 crew marked the first time that two Asians flew on the shuttle at the same time, and with Kazakh cosmonaut Talgat A. Musbayev aboard Mir, the first time that three people of Asian origins flew in space at the same time.

      Left: The STS-65 crew during preflight training at NASA’s Johnson Space Center in Houston. Right: Technicians at NASA’s Kennedy Space Center in Florida prepare the Spacelab module for the STS-65 mission.
      Columbia returned to NASA’s Kennedy Space Center (KSC) in Florida following its previous flight, STS-62, in March 1994. Technicians in KSC’s Orbiter Processing Facility (OPF) serviced the orbiter, removed the previous payload, and installed the Spacelab module in the payload bay. Following a successful leak check of the Spacelab module, rollover of Columbia from the OPF to the Vehicle Assembly Building (VAB) took place on June 8, where workers mated it with an external tank (ET) and two solid rocket boosters (SRBs). Following integrated testing, the stack rolled out to Launch Pad 39A seven days later. The crew participated in the Terminal Countdown Demonstration Test on June 22.

      Liftoff of space shuttle Columbia on STS-65 carrying the second International Microgravity Laboratory.
      On July 8, 1994, precisely on time, Columbia thundered off KSC’s Launch Pad 39A to begin the STS-65 mission. For the first time in shuttle history, a video camera recorded the liftoff from the orbiter’s flight deck, showing the vibrations during the first two minutes while the SRBs fired, smoothing out once the shuttle main engines took over. Mounted inside Columbia’s payload bay, the Spacelab 18-foot-long module provided a shirt-sleeve environment for the astronauts to conduct the scientific experiments. As during many Spacelab missions, the STS-65 crew carried out science operations 24-hours a day, divided into two teams – the red shift comprised Cabana, Halsell, Hieb, and Mukai, while Chiao, Thomas, and Walz made up the blue shift.

      Left: Still image from video recorded on the shuttle’s flight deck during powered ascent. Middle: James D. Halsell, left, and Carl E. Walz moments after Columbia reached orbit. Right: View of the Spacelab module in the shuttle’s payload bay.

      Left: Richard J. Hieb opens the hatch from the airlock to the tunnel leading to the Spacelab module. Middle: Hieb and Chiaki Mukai begin activating Spacelab and its experiments. Right: The view from the tunnel showing astronauts at work in the Spacelab module.
      After reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. Shortly after, Hieb opened the hatch to the transfer tunnel and translated through it to enter the Spacelab module for the first time. He and Mukai activated the module and turned on the first experiments. For the next 14 days, the astronauts worked round the clock, with Cabana, Halsell, and Walz managing the shuttle’s systems while Hieb, Chiao, Thomas, and Mukai conducted the bulk of the research. The astronauts commemorated the 25th anniversary of the Apollo 11 launch on July 16 and the Moon landing four days later, recalling that their spacecraft and the Command Module shared the name Columbia.

      Left: Chiaki Mukai of the National Space Development Agency of Japan, now the Japan Aerospace Exploration Agency, talks to students in Japan using the shuttle’s amateur radio. Middle: Richard J. Hieb, left, and Robert D. Cabana take an air sample from an experiment. Right: Hieb in the Lower Body Negative Pressure device.

      Left: Donald A. Thomas, left, Leroy Chiao, Richard J. Hieb, and Chiaki Mukai at work in the Spacelab module. Middle: Chiao, left, and Thomas work on the Biorack instruments. Right: Goldfish swim in the Aquatic Animal Experiment Unit.

      Left: Robert D. Cabana uses the shuttle’s amateur radio. Middle: Leroy Chiao looks out at the Earth. Right: Carl E. Walz working on the shuttle’s flight deck.

      Left: Carl E. Walz flies through the Spacelab module. Middle: Donald A. Thomas gives two thumbs up for the crew’s performance during the mission. Right: Thomas, left, Walz, and Leroy Chiao pay tribute to Apollo 11 on the 25th anniversary of the Moon landing mission.

      Left: The first time two Asians fly on the shuttle at the same time – Chiaki Mukai, left, of the National Space Development Agency of Japan, now the Japan Aerospace Exploration Agency, left, and NASA astronaut Leroy Chiao. Middle: Donald A. Thomas, left, James D. Halsell, Carl E. Walz, and Chiao, all selected in 1990 as part of astronaut class 13, nicknamed The Hairballs. Right: Inflight photograph of the STS-65 crew.

      A selection of the STS-65 crew Earth observation photographs. Left: Rio de Janeiro. Middle: Barrier islands in Papua New Guinea. Right: Hurricane Emilia in the central Pacific Ocean.

      Left: James D. Halsell uses the laptop-based PILOT to train for the entry and landing. Middle: The astronauts close Columbia’s payload bay doors prior to entry. Right: Flash of plasma seen through Columbia’s overhead window during reentry.
      At the end of 13 days, the astronauts finished the last of the experiments and deactivated the Spacelab module. Managers waved off the planned landing on July 22 due to cloudy weather at KSC. On July 23, the astronauts closed the hatch to the Spacelab module for the final time, closed Columbia’s payload bay doors, donned their launch and entry suits, and strapped themselves into their seats for entry and landing. Cabana piloted Columbia to a smooth landing on KSC’s Shuttle Landing Facility, completing 236 orbits around the Earth in 14 days, 17 hours, and 55 minutes, at the time the longest shuttle flight. Mukai set a then-record for the longest single flight by a woman. In October 1994, Columbia returned to its manufacturer, Rockwell International in Palmdale, California, for scheduled modification and refurbishment before its next mission, STS-73, in October 1995.

      Left: Robert D. Cabana pilots Columbia during the final approach to NASA’s Kennedy Space Center (KSC) in Florida, with the Vehicle Assembly Building visible through the window. Middle: Columbia touches down on KSC’s Shuttle Landing Facility to end the STS-65 mission. Right: Donald A. Thomas, left, and Cabana give a thumbs up after the successful mission.
      The two Spacelab modules flew a total of 16 times, the last one during the STS-90 Neurolab mission in April 1998. Visitors can view the module that flew on STS-65 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia. The other module resides at the Airbus Defence and Space plant in Bremen, Germany, and not accessible to the public.

      The Spacelab long module that flew on STS-65 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia.
      Enjoy the crew narrate a video about the STS-65 mission. Read Cabana’s and Chiao’s recollections of the STS-65 mission in their oral histories with the JSC History Office.
      Explore More
      11 min read Fourth of July Holidays in Space
      Article 1 week ago 9 min read 40 Years Ago: STS-41D – First Space Shuttle Launch Pad Abort
      Article 2 weeks ago 5 min read The 1998 Florida Firestorm and NASA’s Kennedy Space Center
      Article 2 weeks ago View the full article
    • By European Space Agency
      Video: 00:02:06 Europe’s new rocket Ariane 6 powered into space on 9 July 2024 from a newly built dedicated launch pad in French Guiana. Liftoff occurred at 16:00 local time (20:00 BST, 21:00 CEST). 
      Europe’s new rocket Ariane 6 powered Europe into space taking with it a varied selection of experiments, satellites, payload deployers and reentry demonstrations that represent thousands across Europe, from students to industry and experienced space actors. 
      This inaugural flight, designated VA262, is a demonstration flight to show the capabilities and prowess of Ariane 6 in escaping Earth's gravity and operating in space. Nevertheless, it had several passengers on board. 
      Ariane 6 was built by prime contractor and design authority ArianeGroup. In addition to the rocket, the liftoff demonstrated the functioning of the launch pad and operations on ground at Europe's Spaceport. The new custom-built dedicated launch zone was built by France's space agency CNES and allows for a faster turnover of Ariane launches. 
      Ariane 6 is Europe’s newest heavy-lift rocket, designed to provide great power and flexibility at a lower cost than its predecessors. The launcher’s configuration – with an upgraded main stage, a choice of either two or four powerful boosters and a new restartable upper stage – will provide Europe with greater efficiency and possibility as it can launch multiple missions into different orbits on a single flight, while its upper stage will deorbit itself at the end of mission. 
      ESA’s main roles in the Ariane 6 programme is as contracting authority – managing the budget from Member States participating in the Ariane 6 development programme; and as launch system architect – ensuring that the rocket and launch pad infrastructure work together. 
      Ariane 6 is the latest in Europe's Ariane rocket series, taking over from Ariane 5 featuring a modular and versatile design that can launch missions from low-Earth orbit and farther out to deep space. 
      Access all the replays from the launch event.  
      Access all the launch campaign footage in broadcast quality.  
      View the full article
  • Check out these Videos

×
×
  • Create New...