Jump to content

Grasshopper 250m Test | Natural Sound


SpaceX

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/JPL-Caltech Two full-scale development model rovers, part of NASA’s Cooperative Autonomous Distributed Robotic Exploration (CADRE) technology demonstration, drive in the Mars Yard at the agency’s Jet Propulsion Laboratory in Southern California in this image from August 2023. The project is designed to show that a group of robotic spacecraft can work together as a team to accomplish tasks and record data autonomously – without explicit commands from mission controllers on Earth.
      A series of Mars Yard tests with the development models confirmed CADRE hardware and software can work together to accomplish key goals for the project. The rovers drove together in formation and adjusted their plans as a group when faced with unexpected obstacles.
      CADRE is slated to arrive at the Reiner Gamma region of the Moon through NASA’s Commercial Lunar Payload Services (CLPS) initiative. The network of robots will spend the daylight hours of a single lunar day – about 14 Earth days – conducting experiments that will test their capabilities.
      Image Credit: NASA/JPL-Caltech
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Gateways to Blue Skies Competition is sponsored by NASA’s Aeronautics Research Mission Directorate and is managed by the National Institute of Aerospace.Image Credit: NASA Eight teams participating in the 2024 Gateways to Blue Skies: Advancing Aviation for Natural Disasters Competition have been selected to present their design concepts to a panel of industry experts at the 2024 Blue Skies Forum, May 30 and 31, 2024 at NASA’s Ames Research Center in Mountain View, California.  
      Sponsored by NASA’s Aeronautics Research Mission Directorate (ARMD), this year’s Blue Skies Competition asked teams of university students to research and conceptualize aviation-related systems that will aid in natural disaster management, and to submit a five to seven-page proposal and a video summarizing their concept.  
      “We are thrilled with the diversity of ideas from all the finalists and can see their passion for making a real impact in natural disaster response through new and improved aviation systems,” said Steven Holz, NASA Aeronautics University Innovation Assistant Project Manager and Blue Skies judge and co-chair. “We look forward to seeing their final papers, infographics, and hearing their final presentations at the forum.” 
      The 2024 Gateways to Blue Skies: Advancing Aviation for Natural Disasters finalist projects represent diverse natural disaster response types, including earthquakes, avalanches, volcanic eruptions, hurricanes, floods, and wildfires: 
      Boston University  
      Deployable Unmanned Aerial System to Detect and Map Volcanic Ash Clouds  
      Advisor: James Geiger  
      Boston University  
      Rapid Evaluation, Coordination, Observation, Verification & Environmental Reporting (RECOVER)  
      Advisor: Dr. Anthony Linn  
      Bowie State University  
      Enhancing Earthquake Disaster Relief with Artificial Intelligence and Machine Learning  
      Advisor: Dr. Haydar Teymourlouei  
      California State Polytechnic University, Pomona  
      Aero-Quake Emergency Response Network  
      Advisor: Mark Gonda  
      Cerritos College  
      F.I.R.E. (Fire Intervention Retardant Expeller)  
      Advisor: Janet McLarty-Schroeder  
      Columbia University  
      AVATARS: Aerial Vehicles for Avalanche Terrain Assessment and Reporting Systems  
      Faculty Advisor: Dr. Mike Massimino  
      North Carolina State University  
      Reconnaissance and Emergency Aircraft for Critical Hurricane Relief (REACHR)  
      Advisor: Dr. Felix Ewere  
      University of Texas, Austin  
      Data Integrated UAV for Wildfire Management  
      Advisor: Dr. Christian Claudel  
      As climate change increasingly influences the frequency and severity of natural disasters on a global scale, opportunities to contribute at the intersection of technological advancement, aviation, and natural disasters grow in both number and importance. NASA Aeronautics is dedicated to expanding its efforts to assist commercial, industry, and government partners in advancing aviation-related systems that could help prepare for natural disasters, lessen their impacts, and speed up recovery efforts. 
      The eight finalist teams each receive $8,000 stipends to facilitate full participation in the Gateways to Blue Skies Forum, which will be held in May in Mountain View and will be livestreamed globally. Winning team members earn a chance to intern at one of NASA’s Aeronautics centers in the 2024-25 academic year. 
      The 2024 Gateways to Blue Skies competition is sponsored by NASA’s Aeronautics Research Mission Directorate’s (ARMD’s) University Innovation Project (UI) and is managed by the National Institute of Aerospace (NIA). 
      For more on the Gateways to Blues Skies: Advancing Aviation for Natural Disasters competition, visit https://blueskies.nianet.org. 
      Share
      Details
      Last Updated Mar 26, 2024 Related Terms
      Langley Research Center Aeronautics Explore More
      3 min read NASA Armstrong Updates 1960s Concept to Study Giant Planets
      Article 2 weeks ago 5 min read NASA Helps Emerging Space Companies ‘Take the Heat’
      Article 3 weeks ago 8 min read ARMD Solicitations
      Article 4 weeks ago View the full article
    • By NASA
      NASA continued a key RS-25 engine test series for future Artemis flights of the agency’s powerful SLS (Space Launch System) rocket March 22 with a hot fire on the Fred Haise Test Stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.NASA/Danny Nowlin Full-duration RS-25 engine hot fireNASA/Danny Nowlin Full-duration RS-25 engine hot fireNASA/Danny Nowlin NASA continued a key RS-25 engine test series for future Artemis flights of the agency’s powerful SLS (Space Launch System) rocket March 22 with a hot fire on the Fred Haise Test Stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. It marked the 10th hot fire in a 12-test series to certify production of new RS-25 engines by lead contractor Aerojet Rocketdyne, an L3 Harris Technologies company. The NASA Stennis test team fired the certification engine for 500 seconds, or the same amount of time engines must fire to help launch the SLS rocket to space with astronauts aboard the Orion spacecraft. Operators powered the engine up to a level of 113%, which is beyond the 111% power level new RS-25 engines use to provide additional thrust. Testing up to the 113% power level provides a margin of operational safety. Newly produced engines will power NASA’s SLS rocket on Artemis missions to the Moon and beyond, beginning with Artemis V. For Artemis missions I-IV, NASA and Aerojet Rocketdyne modified 16 former space shuttle engines for use on the SLS rocket. Four RS-25 engines fire simultaneously to help launch each SLS rocket, producing up to 2 million pounds of combined thrust. Through Artemis, NASA will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all. RS-25 tests at NASA Stennis are conducted by a diverse team of operators from NASA, Aerojet Rocketdyne, and Syncom Space Services, prime contractor for site facilities and operations.
      View the full article
    • By NASA
      Astronauts will test drive NASA’s Orion spacecraft for the first time during the agency’s Artemis II test flight next year. While many of the spacecraft’s maneuvers like big propulsive burns are automated, a key test called the proximity operations demonstration will evaluate the manual handling qualities of Orion.

      During the approximately 70-minute demonstration set to begin about three hours into the mission, the crew will command Orion through a series of moves using the detached upper stage of the SLS (Space Launch System) rocket as a mark. The in-space propulsion stage, called the ICPS (interim cryogenic propulsion stage), includes an approximately two-foot target that will be used to evaluate how Orion flies with astronauts at the controls.

      “There are always differences between a ground simulation and what an actual spacecraft will fly like in space,” said Brian Anderson, Orion rendezvous, proximity operations, and docking manager within the Orion Program at NASA’s Johnson Space Center in Houston. “The demonstration is a flight test objective that helps us reduce risk for future missions that involve rendezvous and docking with other spacecraft.”

      After NASA’s Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen are safely in space, the Moon rocket’s upper stage will fire twice to put Orion on a high Earth orbit trajectory. Then, the spacecraft will automatically separate from the rocket stage, firing several separation bolts before springs push Orion a safe distance away.

      As the spacecraft and its crew move away, Orion will perform an automated backflip to turn around and face the stage. At approximately 300 feet away, Orion will stop its relative motion. The crew will take control and use the translational and rotational hand controllers and display system to make very small movements to ensure Orion is responding as expected.

      Next, the crew will very slowly pilot Orion to within approximately 30 feet of the stage. A two-foot auxiliary target mounted inside the top of the stage, similar to the docking target used by spacecraft visiting the International Space Station, will guide their aim.

      “The crew will view the target by using a docking camera mounted inside the docking hatch window on the top of the crew module to see how well aligned they are with the docking target mounted to the ICPS,” Anderson said.
      “It’s a good stand in for what crews will see when they dock with Starship on Artemis III and to the Gateway on future missions.”

      About 30 feet from the stage, Orion will stop and the crew will checkout the spacecraft’s fine handling qualities to evaluate how it performs in close proximity to another spacecraft. Small maneuvers performed very close to the ICPS will be done using the reaction control system thrusters on Orion’s European Service Module.

      Orion will then back away and allow the stage to turn to protect its thermal properties. The crew will follow the stage, initiate a second round of manual maneuvers using another target mounted on the side of the stage, approach within approximately 30 feet, perform another fine handling quality check out, then back away.

      At the end of the demonstration, Orion will perform an automated departure burn to move away from the ICPS before the stage then fires to re-enter Earth’s atmosphere over a remote location in the Pacific Ocean. During Orion’s departure burn, engineers will use the spacecraft’s docking camera to gather precise positioning measurements, which will help inform navigation during rendezvous activities on future missions in the lunar environment, where there is no GPS system. 

      Because the Artemis II Orion is not docking with another spacecraft, it is not equipped with a docking module containing lights and therefore is reliant on the ICPS to be lit enough by the Sun to allow the crew to see the targets.

      “As with many of our tests, it’s possible the proximity operations demonstration won’t go exactly as expected,” said Anderson. “Even if we don’t accomplish every part of the demonstration, we’ll continue on with the test flight as planned to accomplish our primary objectives, including evaluating Orion’s systems with crew aboard in the deep space environment and keeping the crew safe during the mission.”

      The approximately 10-day Artemis II flight will test NASA’s foundational human deep space exploration capabilities, the SLS rocket and Orion spacecraft, for the first time with astronauts and will pave the way for lunar surface missions, including landing the first woman, first person of color, and first international partner astronaut on the Moon.



      View the full article
    • By NASA
      SpaceX launched the third integrated flight test of its Super Heavy booster and Starship upper stage from the company’s Starbase orbital launch pad at 8:25 a.m. CT on March 14. This flight test is an important milestone toward providing NASA with a Starship HLS for its Artemis missions. SpaceX As part of NASA’s Artemis campaign to return humans to the Moon for the benefit of all, the agency is working with SpaceX to develop the company’s Starship human landing system (HLS), which will land astronauts near the Moon’s South Pole during the Artemis III and Artemis IV missions. On March 14, SpaceX launched the third integrated flight test of its Super Heavy booster and Starship upper stage, an important milestone toward providing NASA with a Starship HLS for its Artemis missions.
      A complement of 33 Raptor engines, fueled by super-cooled liquid methane and liquid oxygen, powered the Super Heavy booster with Starship stacked on top, from the company’s Starbase orbital launch pad at 8:25 a.m. CDT. Starship, using six Raptor engines, separated from the Super Heavy booster employing a hot-staging technique to fire the engines before separation at approximately three minutes into the flight, in accordance with the flight plan. This was the third flight test of the integrated Super Heavy-Starship system.
      “With each flight test, SpaceX attempts increasingly ambitious objectives for Starship to learn as much as possible for future mission systems development. The ability to test key systems and processes in flight scenarios like these integrated tests allows both NASA and SpaceX to gather crucial data needed for the continued development of Starship HLS,” said Lisa Watson-Morgan, HLS Program Manager at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
      This test accomplished several important firsts that will contribute to the development of Starship for Artemis lunar landing missions. The spacecraft reached its expected orbit and Starship completed the full-duration ascent burn.
      One objective closely tied to future Artemis operations is the transfer of thousands of pounds of cryogenic propellant between internal tanks during the spacecraft’s coast phase as part of NASA’s Space Technology Missions Directorate 2020 Tipping Point awards. The propellant transfer demonstration operations were completed, and the NASA-SpaceX team is currently reviewing the flight data that was received. This Tipping Point technology demonstration is one of more than 20 development activities NASA is undertaking to solve the challenges of using cryogenic fluids during future missions.
      As a key step toward understanding how super-cooled propellant sloshes within the tanks when the engines shut down, and how that movement affects Starship’s stability while in orbit, engineers will study flight test data to assess the performance of thrusters that control Starship’s orientation in space. They are also interested to learn more about how the fluid’s movement within the tanks can be settled to maximize propellant transfer efficiency and ensure Raptor engines receive needed propellant conditions to support restart in orbit.
      “Storing and transferring cryogenic propellant in orbit has never been attempted on this scale before,” said Jeremy Kenny, project manager, NASA’s Cryogenic Fluid Management Portfolio at Marshall. “But this is a game-changing technology that must be developed and matured for science and exploration missions at the Moon, Mars, and those that will venture even deeper into our solar system.”
      Under NASA’s Artemis campaign, the agency will land the first woman, first person of color, and its first international partner astronaut on the lunar surface and prepare for human expeditions to Mars. Commercial human landing systems are critical to deep space exploration, along with the Space Launch System rocket, Orion spacecraft, advanced spacesuits and rovers, exploration ground systems, and the Gateway space station.
      Learn more about NASA’s Human Landing System Program:
      https://www.nasa.gov/humans-in-space/human-landing-system/
      News Media Contact
      Jenalane (Rowe) Strawn
      Marshall Space Flight Center
      Huntsville, Ala.
      256-544-0034
      View the full article
  • Check out these Videos

×
×
  • Create New...