Jump to content

SpaceX Testing - Solar Array Deployment


SpaceX

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Launched in December 2013, ESA’s Gaia spacecraft is on a mission to map the locations and motions of more than a billion stars in the Milky Way with extreme precision.
      But it’s not easy being a satellite: space is a dangerous place. In recent months, hyper-velocity space dust and the strongest solar storm in 20 years have threatened Gaia’s ability to carry out the precise measurements for which it is famous.
      View the full article
    • By NASA
      3 min read
      NASA Mission to Study Mysteries in the Origin of Solar Radio Waves
      NASA’s CubeSat Radio Interferometry Experiment, or CURIE, is scheduled to launch July 9, 2024, to investigate the unresolved origins of radio waves coming from the Sun.
      CURIE will investigate where solar radio waves originate in coronal mass ejections, like this one seen in 304- and 171-angstrom wavelengths by NASA’s Solar Dynamics Observatory. NASA/Goddard Space Flight Center Scientists first noticed these radio waves decades ago, and over the years they’ve determined the radio waves come from solar flares and giant eruptions on the Sun called coronal mass ejections, or CMEs, which are a key driver of space weather that can impact satellite communications and technology at Earth. But no one knows where the radio waves originate within a CME.
      The CURIE mission aims to advance our understanding using a technique called low frequency radio interferometry, which has never been used in space before. This technique relies on CURIE’s two independent spacecraft — together no bigger than a shoebox — that will orbit Earth about two miles apart. This separation allows CURIE’s instruments to measure tiny differences in the arrival time of radio waves, which enables them to determine exactly where the radio waves came from.
      “This is a very ambitious and very exciting mission,” said Principal Investigator David Sundkvist, a researcher at the University of California, Berkeley. “This is the first time that someone is ever flying a radio interferometer in space in a controlled way, and so it’s a pathfinder for radio astronomy in general.”
      CURIE team members work on integrating the satellites into the CubeSat deployer. ExoLaunch The spacecraft, designed by a team from UC Berkeley, will measure radio waves ranging 0.1 to 19 megahertz to pinpoint the radio waves’ solar origin. These wavelengths are blocked by Earth’s upper atmosphere, so this research can only be done from space.
      CURIE will launch aboard an ESA (European Space Agency) Ariane 6 rocket in early July from the Guiana Space Center in Kourou, French Guiana. The rocket will take CURIE to 360 miles above Earth’s surface, where it can get a clear view of the Sun’s radio waves.
      Once in its circular orbit, the two adjoined CURIE spacecraft will establish communication with ground stations before orienting and separating. When the separated satellites are in formation, their dual eight-foot antennas will deploy and start collecting data.
      CURIE is sponsored by NASA’s Heliophysics Flight Opportunities for Research and Technology (H-FORT) Program and is the sole mission manifested on the NASA CubeSat Launch Initiative’s ELaNa (Educational Launch of Nanosatellites) 43 mission. As a pathfinder, CURIE will demonstrate a proof-of-concept for space-based radio interferometry in the CubeSat form factor. CURIE will also pave the way for the upcoming Sun Radio Interferometer Space Experiment, or SunRISE, mission. SunRISE will employ six CubeSats to map the region where the solar radio waves originate in 2-D.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Jul 08, 2024 Editor Abbey Interrante Related Terms
      CubeSat Launch Initiative CubeSats ELaNa (Educational Launch of Nanosatellites) Goddard Space Flight Center Heliophysics Heliophysics Division Heliophysics Research Program Science Mission Directorate Small Satellite Missions SunRISE (Sun Radio Interferometer Space Experiment) The Sun The Sun & Solar Physics Explore More
      5 min read First of NASA’s SunRISE SmallSats Rolls Off Production Line
      Six of these small satellites will work together, creating the largest radio telescope ever launched…


      Article


      2 years ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Coby Asselin, from left, Adam Curry, and L. J. Hantsche set up the data acquisition systems used during testing of a senor to determine parachute canopy material strength at NASA’s Armstrong Flight Research Center in Edwards, California. The sensor tests seek to quantify the limits of the material to improve computer models and make more reliable supersonic parachutes.NASA/Genaro Vavuris Landing rovers and helicopters on Mars is a challenge. It’s an even bigger challenge when you don’t have enough information about how the parachutes are enduring strain during the descent to the surface. Researchers at NASA’s Armstrong Flight Research Center in Edwards, California, are experimenting with readily available, highly elastic sensors that can be fixed to a parachute during testing to provide the missing data.
      Knowing how the canopy material stretches during deployment can enhance safety and performance by quantifying the limits of the fabric and improving existing computer models for more reliable parachutes for tasks such as landing astronauts on Earth or delivering scientific instruments and payloads to Mars. This is the work Enhancing Parachutes by Instrumenting the Canopy, or EPIC, seeks to advance the ability to measure the strain on a parachute.
      “We are aiming to prove which sensors will work for determining the strain on parachute canopy material without compromising it,” said L.J. Hantsche, project manager. NASA’s Space Technology Mission Directorate funds the team’s work through the Early Career Initiative project.
      Starting with 50 potential sensor candidates, the team narrowed down and tested 10 kinds of different sensors, including commercially available and developmental sensors. The team selected the three most promising sensors for continued testing. Those include a silicone-based sensor that works by measuring a change in storage of electrical charge as the sensor is stretched. It is also easy to attach to data recording systems, Hantsche explained. The second sensor is a small, stretchable braided sensor that measures the change in electrical storage. The third sensor is made by printing with a metallic ink onto a thin and pliable plastic.
      The test team prepares a test fixture with a nylon fabric sample at NASA’s Armstrong Flight Research Center in Edwards, California. The fabric in the test fixture forms a bubble when pressure is applied to the silicone bladder underneath. A similar test can be performed with a sensor on the fabric to verify the sensor will work when stretched in three dimensions.NASA/Genaro Vavuris Pressure is applied to a test fixture with a nylon fabric sample until it fails at NASA’s Armstrong Flight Research Center in Edwards, California. The fabric in the test fixture forms a bubble when pressure is applied to the silicone bladder underneath. In this frame, the silicone bladder is visible underneath the torn fabric after it was inflated to failure. A similar test can be performed with a sensor on the fabric to verify the sensor will work when stretched in three dimensions.NASA/Genaro Vavuris Determining methods to bond each of the sensors to super thin and slippery canopy material was hard, Hantsche said. Once the team figured out how to attach the sensors to the fabric, they were ready to begin testing.
      “We started with uniaxial testing, where each end of the parachute material is secured and then pulled to failure,” she said. “The test is important because the stretching of the sensor causes its electrical response. Determining the correlation of strain and the sensor response when it is on the fabric is one of our main measurement goals.”
      This stage of testing was accomplished in partnership with NASA’s Jet Propulsion Laboratory in Pasadena, California. A high-speed version of this test, which simulates the speed of the parachute deployment, was performed at NASA’s Glenn Research Center in Cleveland.
      The team used a bubble test for the sensors, which simulates testing of a 3D parachute. It consists of the fabric sample and a silicone membrane sandwiched between a four-inch-diameter ring and the test structure. When it is pressurized from the inside, the silicone membrane expands the fabric and sensor into a bubble shape. The test is used to validate the sensor’s performance as it bends and is compared to the other test results.
      Erick Rossi De La Fuente, from left, John Rudy, L. J. Hantsche, Adam Curry, Jeff Howell, Coby Asselin, Benjamin Mayeux, and Paul Bean pose with a test fixture, material, sensor, and data acquisition systems at NASA’s Armstrong Flight Research Center in Edwards, California. The sensor tests seek to quantify the limits of the material to improve computer models and make more reliable supersonic parachutes.NASA/Genaro Vavuris With the EPIC project nearing completion, follow-on work could include temperature tests, developing the data acquisition system for flight, determining if the sensor can be packed with a parachute without adverse effects, and operating the system in flight. The EPIC team is also working with researchers at NASA’s Langley Research Center in Hampton, Virginia, to flight test their sensors later this year using the center’s drone test, which drops a capsule with a parachute.
      In addition, the EPIC team is partnering with the Entry Systems Modeling Group at NASA’s Ames Research Center in California’s Silicon Valley to propose an all-encompassing parachute project aimed at better understanding parachutes through modeling and test flights. The collaborative NASA project may result in better parachutes that are safer and more dependable for the approaching era of exploration.
      Share
      Details
      Last Updated Jun 27, 2024 Related Terms
      Armstrong Flight Research Center Ames Research Center Glenn Research Center Jet Propulsion Laboratory Langley Research Center Space Technology Mission Directorate Explore More
      1 min read Liftoff! Redesigned NASA Ames Visitor Center Engages Kids, Families
      Article 43 mins ago 5 min read NASA’s Mars Odyssey Captures Huge Volcano, Nears 100,000 Orbits
      Article 1 hour ago 5 min read Detective Work Enables Perseverance Team to Revive SHERLOC Instrument
      Article 22 hours ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong Programs & Projects
      Armstrong Technologies
      Armstrong Flight Research Center History
      View the full article
    • By NASA
      A SpaceX Falcon Heavy rocket carrying the National Oceanic and Atmospheric Administration (NOAA) GOES-U (Geostationary Operational Environmental Satellite U) lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Tuesday, June 25, 2024. The GOES-U satellite is the final satellite in the GOES-R series, which serves a critical role in providing continuous coverage of the Western Hemisphere, including monitoring tropical systems in the eastern Pacific and Atlantic oceans.Credits: SpaceX NASA successfully launched the fourth and final satellite in a series of advanced weather satellites for NOAA (National Oceanic and Atmospheric Administration) at 5:26 p.m. EDT Tuesday. The GOES-U (Geostationary Operational Environmental Satellite) will benefit the nation by providing continuous coverage of weather and hazardous environmental conditions across much of the Western Hemisphere.
      The satellite launched on a SpaceX Falcon Heavy rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Mission managers confirmed at 10:18 p.m. the spacecraft’s solar arrays successfully deployed, and the spacecraft was operating on its own power.
      “As communities across the country and the world feel the effects of extreme weather, satellites like GOES-U keep a close watch to monitor weather in real time,” said NASA Administrator Bill Nelson. “NASA and NOAA have worked together for several decades to bring critical data back down to Earth to prepare for severe storms, fire detection, and much more. This fleet of advanced satellites is strengthening resilience to our changing climate, and protecting humanity from weather hazards on Earth, and in space.”
      In addition to its critical role in terrestrial weather prediction, the GOES constellation of satellites helps forecasters predict space weather near Earth that can interfere with satellite electronics, GPS, and radio communications. The GOES-U satellite goes beyond the capabilities of its predecessors with  a new space weather instrument, the Compact Coronograph-1, which blocks the Sun’s bright light so scientists can observe the relatively fainter solar atmosphere.
      “There are so many applications for GOES data – many of which directly impact our everyday lives here on Earth,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “GOES-U will add to the global data record, allowing NASA and NOAA to track changes in our climate and also provide critical information before severe weather and natural disasters strike. NASA looks forward to teaming up with NOAA again as we enter the next generation of Earth-observing satellites.”
      Once GOES-U is in a geostationary orbit, about 22,200 miles above Earth, it will be renamed GOES-19. Following a successful orbital checkout of its instruments and systems, GOES-19 will go into service, keeping watch of the weather over most of North America, including the contiguous United States and Mexico, as well as Central and South America, the Caribbean, and the Atlantic Ocean to the west coast of Africa.
      “The data that GOES-U will provide is critical to protecting the safety of people in the Western Hemisphere,” said John Gagosian, director, NASA’s Joint Agency Satellite Division. “With this successful launch, forecasters will have a resource to better inform and educate the public.”
      NASA’s Goddard Space Flight Center in Greenbelt, Maryland, oversaw the acquisition of the GOES-R series spacecraft and instruments and built the magnetometer for GOES-U and its predecessor, GOES-T. NASA’s Launch Services Program, based at Kennedy, provided launch management for the mission.
      The GOES-R Series Program is overseen by NOAA, through an integrated NOAA-NASA office that manages the ground system, operates the satellites, and distributes data to users worldwide. Lockheed Martin designs, builds, and tests the GOES-R series satellites. L3Harris Technologies provides the main instrument payload, the Advanced Baseline Imager and the ground system, which includes the antenna system for data reception.
      For more information about GOES, visit:
      https://www.nasa.gov/content/goes
      -end-
      Liz Vlock
      Headquarters, Washington
      202-358-1600
      elizabeth.a.vlock@nasa.gov
      Peter Jacobs
      Goddard Space Flight Center, Greenbelt, Maryland
      301-286-0535
      peter.jacobs@nasa.gov
      Leejay Lockhart
      Kennedy Space Center, Florida
      321-747-8310
      leejay.lockhart@nasa.gov
      Share
      Details
      Last Updated Jun 25, 2024 LocationNASA Headquarters Related Terms
      GOES (Geostationary Operational Environmental Satellite) Earth Science Kennedy Space Center NOAA (National Oceanic and Atmospheric Administration) Science & Research Science Mission Directorate View the full article
    • By NASA
      “HuskyWorks,” a team from Michigan Technological University’s Planetary Surface Technology Development Lab, tests the excavation tools of a robot on a concrete slab, held by a gravity-offloading crane on June 12 at NASA’s Break the Ice Lunar Challenge at Alabama A&M’s Agribition Center in Huntsville, Alabama. Led by Professor Paul van Susante, the team aimed to mimic the conditions of the lunar South Pole, winning an invitation to use the thermal vacuum chambers at NASA’s Marshall Space Flight Center to continue robotic testing. Read more about NASA’s Break the Ice Lunar Challenge.
      NASA/Jonathan Deal 
      View the full article
  • Check out these Videos

×
×
  • Create New...