Jump to content

SpaceX Next - Commercial Crew


SpaceX

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Official NASA’s SpaceX Crew-9 portraits with Zena Cardman, Nick Hague, Stephanie Wilson and Aleksandr Gorbunov. Credit: NASA Media accreditation now is open for the launch of NASA’s ninth rotational mission of a SpaceX Falcon 9 rocket and Dragon spacecraft that will carry astronauts to the International Space Station for a science expedition. This mission is part of NASA’s Commercial Crew Program.
      Launch of NASA’s SpaceX Crew-9 mission is targeted for no earlier than mid-August from Launch Complex 39A at the agency’s Kennedy Space Center in Florida, pending completion of the company’s ongoing Falcon 9 investigation. Crew safety and mission assurance are top priorities for NASA and its partners.
      The launch will carry NASA astronauts Zena Cardman, commander; Nick Hague, pilot; and Stephanie Wilson, mission specialist; along with Roscosmos cosmonaut Alexander Gorbunov, mission specialist. This is the first spaceflight for Cardman and Gorbunov, the second mission to the orbiting laboratory for Hague, and fourth spaceflight for Wilson, who has spent 42 days in space aboard three space shuttle Discovery missions – STS-120, STS-121, and STS-131.
      U.S. media, international media without U.S. citizenship, and U.S. citizens representing international media organizations must apply by 11:59 p.m. EDT on Wednesday, July 31. All accreditation requests must be submitted online at:
      https://media.ksc.nasa.gov
      NASA’s media accreditation policy is online. For questions about accreditation or special logistical requests, email: ksc-media-accreditat@mail.nasa.gov. Requests for space for satellite trucks, tents, or electrical connections are due by Thursday, Aug. 1.
      For other questions, please contact NASA Kennedy’s newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371.
      For launch coverage and more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov
      Share
      Details
      Last Updated Jul 17, 2024 LocationNASA Headquarters Related Terms
      Humans in Space Commercial Crew Commercial Space International Space Station (ISS) ISS Research Johnson Space Center Kennedy Space Center View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      HyAxiom’s 440-kilowatt phosphoric acid fuel cell is now its flagship product, and it still builds on technical know-how developed under the Apollo and space shuttle programs.Credit: HyAxiom Inc. NASA’s investment in fuel cells dates to the 1960s when most of the world was still reliant on fossil fuels. A fuel cell generates electricity and heat when hydrogen and oxygen bond through an electrolyte. Because its only by-product is water, it’s an environmentally friendly power source. 

      The agency’s interest in fuel cells came when NASA needed to fuel missions to the Moon. Engineers at NASA’s Johnson Space Center in Houston looked to fuel cells because they could provide more energy per pound than batteries could over the course of a long mission. At that time, fuel cells were just a concept that had never been put to practical use. 
      NASA funded development of the first practical fuel cells because they were necessary to cut weight from the Apollo spacecraft for Moon missions. Three fuel cells in the Apollo service module provided electricity for the capsule containing the astronauts. The division of Pratt & Whitney that made the fuel cells later became UTC Power, now a subsidiary of Doosan Group known as HyAxiom Inc.Credit: NASA NASA funded three companies, including a portion of Pratt & Whitney, to develop prototypes. For Apollo mission fuel cells, NASA selected the Pratt & Whitney group, which soon became UTC Power, as the supplier of all the space shuttle fuel cells. With the agency funding and shaping its technology development, UTC Power eventually started offering commercial fuel cells. The company is now known as HyAxiom Inc. and operates from the same plant in South Windsor, Connecticut, that produced fuel cells for the agency. 

      The company released its first commercial fuel cell in the mid-1990s and introduced its current product line about a decade later. 

      “The models they built for these products we use today had a lot of the electrochemistry understanding from the space program,” said Sridhar Kanuri, HyAxiom’s chief technology officer. 

      HyAxiom now produces around 120 units per year but expects to ramp up as government investments in fuel cells increase. The U.S. government plans to use fuel cells to store energy from renewable sources. 
      Today’s commercial fuel cell companies received much of their knowledge base from NASA. John Scott, NASA’s principal technologist for power and energy storage said, “All these companies trace their intellectual property heritage, their corporate heritage, even the generations of personnel to those companies NASA funded back in the early 1960s.” 
      Read More Share
      Details
      Last Updated Jul 15, 2024 Related Terms
      Technology Transfer & Spinoffs Apollo Johnson Space Center Spinoffs Technology Transfer Explore More
      2 min read Sky High Sustainability: NASA Johnson’s Pocket Prairie Flourishes Atop Building 12
      Article 6 hours ago 6 min read Voyagers of Mars: The First CHAPEA Crew’s Yearlong Journey 
      Article 4 days ago 5 min read From Polar Peaks to Celestial Heights: Christy Hansen’s Unique Path to Leading NASA’s Commercial Low Earth Orbit Development Program 
      Article 6 days ago Keep Exploring Discover Related Topics
      The Apollo Program
      Technology Transfer & Spinoffs
      Exploring the Moon
      Technology
      View the full article
    • By NASA
      When the first humans travel to the Red Planet, they will need to know how to repair and maintain equipment, grow their own food, and stay healthy, all while contending with Earth-to-Mars communication delays. They must also find ways to build comradery and have fun. 

      The first all-volunteer CHAPEA (Crew Health and Performance Exploration Analog) crew accomplished all of that and more during their 378-day analog mission on the surface of Mars.  

      Living in the isolated Mars Dune Alpha, a 3D-printed, 1,700-square-foot habitat, crew members Kelly Haston, Ross Brockwell, Nathan Jones, and Anca Selariu faced the rigors of a simulated Mars expedition, enduring stressors akin to those of a real mission to the Red Planet. They also celebrated holidays and birthdays, gave each other haircuts, and found moments of levity in isolation. Their journey will help scientists understand the challenges of deep space missions and offer invaluable insights into the resilience of the human spirit. 
      NASA’s CHAPEA (Crew Health and Performance Exploration Analog) crew member Kelly Haston greets Deputy Director of Flight Operations Kjell Lindgren and Johnson Space Center Deputy Director Stephen Koerner at the habitat’s door. NASA/Josh Valcarcel As the crew concluded their journey on July 6, NASA astronaut and Deputy Director of Flight Operations Kjell Lindgren opened the habitat door and welcomed them home. 

      “The crew and their families have committed a year of their lives in service to NASA, the country, and humanity’s exploration of space. Thank you to for committing yourselves to research that will enable our future exploration of space,” he said. “Your fingerprints are going to be an indelible part of those first footprints on Mars.” 

      The CHAPEA crew brought their diverse backgrounds and experiences to the mission, collaborating with NASA’s scientists and engineers to collect data that will provide insight into maintaining crew health and performance for future missions to Mars. 
      PHOTO DATE: July 06, 2024 LOCATION: Bldg. 220 – CHAPEA Habitat SUBJECT: ASA Crew Health and Performance Exploration Analog (CHAPEA) Mars Analog Mission 1 Egress Event with crew Anca Selariu, Nathan Jones, Kelly Haston, Ross Brockwell. PHOTOGRAPHER: NASA/Josh ValcarcelNASA/Josh Valcarcel Kelly Haston: Mission Commander and Pioneering Scientist 

      Haston, the mission commander, is a research scientist who builds human disease models. She has spearheaded innovative stem cell-based projects, deriving multiple cell types for work in infertility, liver disease, and neurodegeneration. Her role was pivotal in maintaining crew morale and ensuring the success of daily operations. 
      She highlighted the importance of teamwork and adaptability in a mission with such high stakes.
      “We had to rely on each other and our training to navigate the challenges we faced,” she said. “Every day brought new obstacles, but also new opportunities for growth and learning.” 

      Nathan Jones: Medical Officer and Expert Communicator 

      Jones, the crew medical officer, used his emergency and international medicine experience to tackle the unique challenges of the Mars mission. His expertise in problem-solving and effective communication in a time-sensitive and resource-limited environment was essential due to the approximately one-hour transmission delay. “Even something as simple as when to communicate is important,” said Jones. The crew had to consider what observations were essential to report to each other or Mission Control to avoid overburdening the team or unnecessarily using the limited bandwidth to Earth. 

      “Everything we do in CHAPEA is touched by the heroes working on the ground at NASA,” he said. “We couldn’t ask for a better experience or better people to work with.” 

      The experience evolved into a journey of personal growth for Jones. “I am constantly looking forward, planning for the future,” he said. “I learned to take time to enjoy the current season and be patient for the coming ones.” 
      He also discovered a new hobby: art. “I have even surprised myself with how well some of my sketches have turned out,” he said. 

      Anca Selariu: Microbiologist and Innovative Thinker 

      Anca Selariu brought expertise as a microbiologist in the U.S. Navy, with a background in viral vaccine discovery, prion transmission, gene therapy development, and infectious disease research management. 

      Selariu expressed that she owes much to the Navy, including her involvement in CHAPEA, as it helped shape her both personally and professionally. “I hope to bring back a fresh perspective, along with a strong inclination to think differently about a problem, and test which questions are worth asking before we set out answering them,” she said.  

      Reflecting on the mission, Selariu said, “Every day seemed to be a new revelation about something; about Earth, about art, about humans, about cultures, about the history of life in the universe – what little we know of it.” 
      She added, “As much as I appreciate having information at my fingertips, I will miss the luxury of being unplugged in a world that now validates humans by their digital presence.”  

      Ross Brockwell: Structural Engineer and Problem Solver 

      Brockwell, the mission’s flight engineer, focused on infrastructure, building design, and organizational leadership. His structural engineering background influenced his approach to problem solving in the CHAPEA habitat. 
      “An engineering perspective leads you to build an understanding of how things will react and interact, anticipate possible failure points, and ensure redundancy and contingency planning,” he said. 

      That mindset helped the crew develop creative solutions to mission challenges, such as using a 3D printer to design part adapters and tools and find ways to connect as a team. “Several things we wanted to do for fun required innovation, one being developing a bracket so we could safely and securely mount our mini-basketball hoop,” he said. 
      He advises Artemis Generation members interested in contributing to future analog missions to think about systems engineering theory and learn to develop and integrate whole systems while solving individual challenges.  

      Brockwell believes the most important attributes for a CHAPEA crew member are imagination and a strong sense of wonder. “Of course, one needs to have patience, self-control, emotional regulation, and a sense of humor,” he said. “I would also add perspective, which means understanding the importance of exploration missions on behalf of humankind and appreciating being part of something greater than oneself.” 
      The CHAPEA crew is “back on Earth” after their 378-day mission inside the simulated Martian habitat. NASA /Josh Valcarcel A Vision for the Future 
      As the first CHAPEA mission concludes, the data collected and experiences shared by the crew will pave the way for future explorations, bringing humanity one step closer to setting foot on Mars.  
      “One of the biggest things I have learned on this long-duration mission is that we should never underestimate the effects of small gains over time,” said Jones. “Be willing to do the hard things now and it may make all the difference for the future.” 
      Selariu emphasized the importance of interdisciplinary collaboration in upcoming space missions. “What everyone at CHAPEA seems to have in common is passion for space and drive to pursue it no matter the challenges, inconvenience, and personal sacrifices.” 
      Brockwell looks forward to missions to the Red Planet becoming a reality. “It still fills me with awe and excitement to think that one day there will be people on the surface of other worlds, overcoming immense challenges and expanding the existence and awareness of life from Earth.” 
      View the full article
    • By NASA
      The inaugural CHAPEA (Crew Health and Performance Exploration Analog) crew is “back on Earth” after walking out of their simulated Martian habitat at NASA’s Johnson Space Center in Houston on July 6. The first of three simulated missions, CHAPEA Mission 1 was designed to help scientists, engineers, and mission planners better understand how living on another world could affect human health and performance.
      Kelly Haston, commander, Ross Brockwell, flight engineer, Nathan Jones, medical officer, and Anca Selariu, science officer, lived and worked in an isolated 1,700-square-foot, 3D-printed habitat to support human health and performance research to prepare for future missions to Mars.
      “Congratulations to the crew of CHAPEA Mission 1 on their completion of a year in a Mars-simulated environment,” said NASA Administrator Bill Nelson. “Through the Artemis missions, we will use what we learn on and around the Moon to take the next giant leap: sending the first astronauts to Mars. The CHAPEA missions are critical to developing the knowledge and tools needed for humans to one day live and work on the Red Planet.”
      The crew stepped out of the habitat and back into the arms of family and friends after a 378-day simulated Mars surface mission that began June 25, 2023.
      This high-fidelity simulation involved the crew carrying out different types of mission objectives, including simulated “marswalks,” robotic operations, habitat maintenance, exercise, and crop growth. The crew also faced intentional environmental stressors in their habitat such as resource limitations, isolation, and confinement. For the next two weeks, the volunteers will complete post-mission data collection activities before returning home.
      “We planned the last 378 days with many of the challenges crews could face on Mars and this crew dedicated their lives over that time to achieve these unprecedented operational objectives,” said CHAPEA Principal Investigator Grace Douglas. “I am looking forward to diving into the data we have gathered, preparing for CHAPEA Mission 2 and eventually, a human presence on Mars.”
      As NASA works to establish a long-term presence for scientific discovery and exploration on the Moon through the Artemis campaign, analog missions like CHAPEA provide scientific data to validate systems and develop technological solutions for future missions to Mars.
      Two additional one-year CHAPEA missions are planned, with the next targeted to begin in 2025. The subsequent missions will be nearly identical, allowing researchers to collect data from more participants to expand the dataset and provide a broader perspective on the impacts of Mars-realistic resource limitations, isolation and confinement on human health and performance.
      NASA has several other avenues for gathering isolation research, including the Human Exploration Research Analog, Antarctica, and other analogs, as well as human spaceflight missions to the International Space Station to ensure key research goals can be completed to inform future human missions to the Moon and Mars.
      The CHAPEA simulated missions are unique because they test the impacts of extended isolation and confinement with the addition of Mars-realistic time delays of communicating to Earth – up to 44-minutes roundtrip – along with resource limitations relevant to Mars, including a more limited food system that can be supported on the space station and in other analogs.
      To view the ceremony of crew exiting their habitat, visit here.
      Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.
      Learn more about CHAPEA at:
      www.nasa.gov/humans-in-space/chapea/
      View the full article
    • By NASA
      Christy Hansen’s journey with NASA spans more than two decades and is marked by roles that have shaped her into a leader in space exploration. Now serving on a six-month rotation as the deputy manager for NASA’s CLDP (Commercial Low Earth Orbit Development Program) at Johnson Space Center in Houston, she brings 25 years of human spaceflight experience and a global perspective on Earth sciences to her role. 

      Prior to her rotation, she served as the Artemis deputy mission manager in the Moon to Mars Program Office at NASA Headquarters in Washington, where she supported Artemis missions and facilitated the integration of science and utilization activities into the mission architecture and planning.  

      Hansen now leverages her vast expertise to advance NASA’s commercial space initiatives and support the agency’s long-term goals. 
      Christy Hansen serves a six-month rotation as deputy manager for NASA’s Commercial Low Earth Orbit Development Program at Johnson Space Center in Houston. NASA/Bill Hrybyk She is no stranger to Johnson. From 1999 to 2010, Hansen worked as an operations engineer in Johnson’s Flight Operations Directorate, focusing on astronaut training and flight control. She developed procedures, planned spacewalks, and trained astronauts to work in space suits with specialty tools on Space Shuttle, International Space Station, and Hubble Space Telescope missions. She was instrumental in supporting real-time operations as a flight controller for space station assembly missions and the final mission to service Hubble in 2009. 

      In 2010, Hansen became the operations manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland for the Robotic Refueling Mission, a technology demonstration payload that flew to the orbiting laboratory on STS-135. By 2012 she transitioned to airborne science project management at Goddard, leading multiple missions including Operation IceBridge’s first deployment to Antarctica. Her work focused on studying changes in Earth’s ice sheets and sea ice in Greenland and Antarctica, where she collaborated with scientists, engineers, and managers to design aircraft-based Earth science missions. 
      Christy Hansen at Antarctica’s geographic south pole in 2012. Faced with her husband’s diagnosis of amyotrophic lateral sclerosis in 2014, Hansen drew on her vast experience and passion for engineering to solve a deeply personal issue on the ground. Combining her technical expertise and pioneering spirit, she led an effort to bring eye-gaze technology to Goddard, enabling individuals with neurodegenerative disabilities to continue working without the use of their hands or voice. 

      Her husband, Dave Parker, an engineer at Goddard who worked on all hubble servicing missions and tech demo payloads on the space station, was determined to keep working even when he could not use his arms, legs, hands, or voice. Together, they researched and pushed for this capability, ensuring that the technology could help many others in similar situations. 

      After collaborating with Goddard information technology and the commercial-off-the-shelf Tobi eye gaze company, they managed to implement the system within a year. Parker worked for a year and a half using this technology and supported the real-time installation of space station hardware he helped design from his hospital bed before passing away in March 2021.  

      Hansen continues to work with NASA’s Office of Diversity and Equal Opportunity to make this a standard accommodation option. 

      In her new role, she aims to support the development of an innovative acquisition strategy that fosters a robust commercial low Earth orbit environment. “I look forward to working with the CLDP team and our stakeholders to develop a creative and smart approach that enables a commercially led and operated low Earth orbit destination,” she said. “This includes fostering an open dialogue across disciplines, including critical tech authorities, programs, our industry and international partners, and Johnson and headquarters leadership. We can only go great places together.” 

      Her background in human spaceflight and science missions has given her a unique perspective. “I truly enjoy building partnerships and working across broad teams to achieve amazing goals,” she said. “This diversity of experience gave me an understanding of the critical goals, priorities, and culture of our key NASA stakeholders – and how we must integrate and work together to achieve the NASA mission.” 

      Through her career, she has learned to be open to new ideas and ways of doing things. “Be curious and proactively create space for all voices to be heard; there is more than one way to do things, and you must be open and receptive to different communication styles and experiences,” she said. “I lean on my broad experiences wherever I go.” 
      Christy Hansen at NASA’s Goddard Space Flight Center in Greenbelt, Maryland during her time as the project manager for NASA’s Operation IceBridge. NASA/Bill Hrybyk For young girls interested in a career in space, her advice is clear: “Go, go, go! You will face challenges and hurdles, but human spaceflight and NASA need your ideas, experiences, and energy. You uniquely bring momentum in a way others cannot – so don’t compare yourself to others. Study and do what you love – as that will get you through the hard times.” 

      Looking ahead, she is eager to help make space accessible and affordable to all, enabling a broader and diverse field of future flyers. “These destinations will enable critical science, human research, and tech development – important steppingstones to help us achieve our goals of landing on the Moon again and ultimately going to Mars,” she said. “No matter how dynamic and challenging our work is, my passion for human spaceflight and the NASA mission is inherently part of me.” 

      The agency’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost and enable the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions. 

      Learn more about NASA’s commercial space strategy at: 
      https://www.nasa.gov/humans-in-space/commercial-space/
      View the full article
  • Check out these Videos

×
×
  • Create New...