Jump to content

Stage Separation


SpaceX

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Eric Bordelon Team members are installing pedestals aboard NASA’s Pegasus barge to hold and secure the massive core stage of NASA’s SLS (Space Launch System) rocket, indicating NASA barge crews are nearly ready for its first delivery to support the Artemis II test flight around the Moon. The barge will ferry the core stage on a 900-mile journey from the agency’s Michoud Assembly Facility in New Orleans to its Kennedy Space Center in Florida.
      The Pegasus crew began installing the pedestals July 10.The barge, which previously was used to ferry space shuttle external tanks, was modified and refurbished to compensate for the much larger and heavier core stage for the SLS rocket. Measuring 212 feet in length and 27.6 feet in diameter, the core stage is the largest rocket stage NASA has ever built and the longest item ever shipped by a NASA barge.
      Pegasus now measures 310 feet in length and 50 feet in width, with three 200-kilowatt generators on board for power. Tugboats and towing vessels will move the barge and core stage from Michoud to Kennedy, where the core stage will be integrated with other elements of the rocket and prepared for launch. Pegasus is maintained at NASA Michoud.
      NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
      View the full article
    • By NASA
      NASA/Michael DeMocker NASA is preparing the SLS (Space Launch System) rocket core stage that will help power the first crewed mission of NASA’s Artemis campaign for shipment. On July 6, NASA and Boeing, the core stage lead contractor, moved the Artemis II rocket stage to another part of the agency’s Michoud Assembly Facility in New Orleans. The move comes as teams prepare to roll the massive rocket stage to the agency’s Pegasus barge for delivery to NASA’s Kennedy Space Center in Florida in mid-July.
      Prior to the move, technicians began removing external access stands, or scaffolding, surrounding the rocket stage in early June. NASA and Boeing teams used the scaffolding surrounding the core stage to assess the interior elements, including its complex avionics and propulsion systems. The 212-foot core stage has two huge propellant tanks, avionics and flight computer systems, and four RS-25 engines, which together enable the stage to operate during launch and flight.
      The stage is fully manufactured and assembled at Michoud. Building, assembling, and transporting is a joint process for NASA, Boeing, and lead RS-25 engines contractor Aerojet Rocketdyne, an L3Harris Technologies company.
      NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
    • By NASA
      The core stage is the backbone of the SLS (Space Launch System) rocket that will help power NASA’s Artemis II mission to send a crew of four astronauts around the Moon in 2025. Here, the core stage is currently behind scaffolding to allow work to continue at NASA’s Michoud Assembly Facility in New Orleans. The stage’s two massive propellant tanks hold a collective 733,000 gallons of liquid propellant to power the four RS-25 engines at its base. Following hardware acceptance reviews and final checkouts, the stage will be readied for delivery via the agency’s Pegasus barge to NASA’s Kennedy Space Center in Florida for Artemis II launch preparations. (NASA/ Eric Bordelon) NASA will roll the fully assembled core stage for the agency’s SLS (Space Launch System) rocket that will launch the first crewed Artemis mission out of NASA’s Michoud Assembly Facility in New Orleans in mid-July. The 212-foot-tall stage will be loaded on the agency’s Pegasus barge for delivery to Kennedy Space Center in Florida.
      Media will have the opportunity to capture images and video, hear remarks from agency and industry leadership, and speak to subject matter experts with NASA and its Artemis industry partners as crews move the rocket stage to the Pegasus barge.
      NASA will provide additional information on specific timing later, along with interview opportunities. This event is open to U.S. and international media. International media must apply by June 14. U.S. media must apply by July 3. The agency’s media credentialing policy is available online.  
      Interested media must contact Corinne Beckinger at corinne.m.beckinger@nasa.gov and Craig Betbeze at craig.c.betbeze@nasa.gov. Registered media will receive a confirmation by email.
      The rocket stage with its four RS-25 engines will provide more than 2 million pounds of thrust to send astronauts aboard the Orion spacecraft for the Artemis II mission. Once at Kennedy, teams with NASA’s Exploration Ground Systems Program will finish outfitting the stage and prepare it for stacking and launch. Artemis II is currently scheduled for launch in September 2025.
      Building, assembling, and transporting the core stage is a collaborative process for NASA, Boeing, the core stage lead contractor, and lead RS-25 engines contractor Aerojet Rocketdyne, an L3 Harris Technologies company.
      NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under the agency’s Artemis campaign. The SLS rocket is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. The SLS rocket is the only rocket designed to send Orion, astronauts, and supplies to the Moon in a single launch.
      Learn more about NASA’s Artemis campaign:
      https://www.nasa.gov/artemis/
      -end- 
      Rachel Kraft
      NASA Headquarters, Washington
      202-358-1100
      rachel.h.kraft@nasa.gov
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034
      corinne.m.beckinger@nasa.gov 
      View the full article
    • By NASA
      NASA will roll the fully assembled core stage for the agency’s SLS (Space Launch System) rocket that will launch the first crewed Artemis mission out of NASA’s Michoud Assembly Facility in New Orleans in mid-July. The 212-foot-tall stage will be loaded on the agency’s Pegasus barge for delivery to Kennedy Space Center in Florida.
      Media will have the opportunity to capture images and video, hear remarks from agency and industry leadership, and speak to subject matter experts with NASA and its Artemis industry partners as crews move the rocket stage to the Pegasus barge.
      The core stage is the backbone of the SLS (Space Launch System) rocket that will help power NASA’s Artemis II mission to send a crew of four astronauts around the Moon in 2025. Here, the core stage is currently behind scaffolding to allow work to continue at NASA’s Michoud Assembly Facility in New Orleans. The stage’s two massive propellant tanks hold a collective 733,000 gallons of liquid propellant to power the four RS-25 engines at its base. Following hardware acceptance reviews and final checkouts, the stage will be readied for delivery via the agency’s Pegasus barge to NASA’s Kennedy Space Center in Florida for Artemis II launch preparations. NASA will provide additional information on specific timing later, along with interview opportunities. This event is open to U.S. and international media. International media must apply by June 14. U.S. media must apply by July 3. The agency’s media credentialing policy is available online.  
      Interested media must contact Corinne Beckinger at corinne.m.beckinger@nasa.gov and Craig Betbeze at craig.c.betbeze@nasa.gov. Registered media will receive a confirmation by email.
      The rocket stage with its four RS-25 engines will provide more than 2 million pounds of thrust to send astronauts aboard the Orion spacecraft for the Artemis II mission. Once at Kennedy, teams with NASA’s Exploration Ground Systems Program will finish outfitting the stage and prepare it for stacking and launch. Artemis II is currently scheduled for launch in September 2025.
      Building, assembling, and transporting the core stage is a collaborative process for NASA, Boeing, the core stage lead contractor, and lead RS-25 engines contractor Aerojet Rocketdyne, an L3 Harris Technologies company.
      NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under the agency’s Artemis campaign. The SLS rocket is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. The SLS rocket is the only rocket designed to send Orion, astronauts, and supplies to the Moon in a single launch.
      Learn more about NASA’s Artemis campaign:
      News Media Contact
      Rachel Kraft
      NASA Headquarters, Washington
      202-358-1100
      rachel.h.kraft@nasa.gov
      Corinne Beckinger
      Marshall Space Flight Center, Huntsville, Ala.
      256-544-0034
      corinne.m.beckinger@nasa.gov
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Back to ESI Home
      Advancing Radiation-Hardened Photon Counting Sensor Technologies
      Karl Berggren
      Massachusetts Institute of Technology
      Radiation hardness study of superconducting detectors and electronics Donald Figer
      Rochester Institute of Technology
      Advancing Radiation-Hardened CMOS Detectors for NASA Missions Advancements in Predicting Plume-Surface Interaction Environments During Propulsive Landings
      Laura Villafane
      Auburn University
      Integrating Data-Driven and Physics-Based Models for Plume-Surface Interaction Predictions David Scarborough
      University of Illinois at Urbana-Champaign
      Physics-based Modeling and Tool Development for the Characterization and Uncertainty Quantification of Crater Formation and Ejecta Dynamics due to Plume-surface Interaction Advancing the Performance of Refrigeration Systems Based on the Elastocaloric Effect
      Patrick Shamberger
      Texas A&M University
      Advancing Elastocaloric Refrigeration through Co-design of Materials and Systems Nenad Miljkovic
      University of Illinois at Urbana-Champaign
      Continuous Bending-mode Elastocaloric Composite Refrigeration System for Compact, Lightweight, High-Efficiency Cooling Keep Exploring Discover More Topics From STRG
      Space Technology Mission Directorate
      STMD Solicitations and Opportunities
      Space Technology Research Grants
      About STRG
      View the full article
  • Check out these Videos

×
×
  • Create New...