Jump to content

Falcon 1 Vandenberg Static Fire


SpaceX

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      NASA GOES U SATELLITE LAUNCH / Falcon Heavy
    • By Space Force
      Vandenberg SFB Guardians and Airmen shared operational details on how they support resilient space activities at the U.S. Space Force's West Coast Spaceport and Test range.

      View the full article
    • By European Space Agency
      Image: ESA astronaut candidate Rosemary Coogan lighting a fire during winter survival training in the snowy mountains of the Spanish Pyrenees as part of her basic astronaut training. View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A sample of fabric burns inside an uncrewed Cygnus cargo craft during a previous Spacecraft Fire Safety Experiment investigation, Saffire-IV.Credit: NASA NASA recently concluded the final mission of its Spacecraft Fire Safety Experiment, or Saffire, putting a blazing end to an eight-year series of investigations that provided insights into fire’s behavior in space.
      The final experiment, Saffire-VI, launched to the International Space Station in August 2023 and concluded its mission on Jan. 9, when the Northrop Grumman Cygnus spacecraft it was flying on safely burned up during planned re-entry into Earth’s atmosphere.
      Dr. David Urban, principal investigator, and Dr. Gary Ruff, project manager at NASA’s Glenn Research Center in Cleveland, have led the Saffire project from Northeast Ohio since its initial spark in 2016. Throughout the experiment series, researchers gathered data NASA will use to enhance mission safety and inform future spacecraft and spacesuit designs.
      “How big a fire does it take for things to get bad for a crew?” Urban said. “This kind of work is done for every other inhabited structure here on Earth – buildings, planes, trains, automobiles, mines, submarines, ships – but we hadn’t done this research for spacecraft until Saffire.”

      Like previous Saffire experiments, Saffire-VI took place inside a unit on an uninhabited Cygnus spacecraft that had already departed from the space station, ensuring the safety of the orbiting laboratory and a more representative flight environment. However, this final iteration of the experiment was unique because of the higher oxygen concentration and lower pressure generated in the test unit to simulate the conditions within crewed spacecraft.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA ignited the final set of space fire experiments for Saffire-VI inside Northrop Grumman’s Cygnus cargo spacecraft at the end of the NG-19 resupply mission to the International Space Station. Saffire, or Spacecraft Fire Safety Experiment, was a series of six investigations that provided insights into how fires grow and spread in space. This research is especially important as it will inform future spacecraft designs bound for the Moon and Mars. Video credit: NASA During the 19 Saffire-VI experiment runs, the NASA team and counterparts at Northrop Grumman made various adjustments to air conditions. They then ignited a flame on materials such as plexiglass, cotton, Nomex, and Solid Inflammability Boundary at Low-Speed fabrics. A bead-lined wire inside the unit ignited the materials.
      “The Saffire flow unit is a wind tunnel. We’re pushing air through it,” Ruff said. “Once test conditions are set, we run electrical current through a thin wire, and the materials ignite.”
      Cameras inside allowed the team to observe the flame while remote sensors outside the Saffire flow unit collected data about what was happening in the Cygnus vehicle. The images and information were gathered in real-time before being sent to Earth for scientists to analyze.
      “You’ve got a heat release rate and a rate of release of combustion products,” Ruff said. “You can take those as model input and predict what will happen in a vehicle.” 
      The next decade of exploration and science missions will see astronauts flying deeper into space and to locations that have yet to be explored. Though the Saffire experiments have been extinguished, NASA has learned valuable lessons and gathered mountains of data on fire behavior that will help the agency design safer spacecraft and accomplish its ambitious future missions.

      Explore More
      1 min read January 2024 Retirements
      Article 9 hours ago 2 min read NASA Trains Teachers on Upcoming Solar Eclipse
      Article 9 hours ago 1 min read NASA Participates in “Ohioans in Space” Painting Unveiling
      Article 9 hours ago View the full article
    • By NASA
      NASA/Danny Nowlin Clouds of white vapor pile up at NASA’s Stennis Space Center in Bay St. Louis, Mississippi during a full-duration, 500-second hot fire of an RS-25 certification engine Jan. 17, 2024. This test series is critical for future flights of NASA’s SLS (Space Launch System) rocket in support of the Artemis campaign.
      During the Jan. 17 test, operators followed a “test like you fly” approach, firing the engine for the same amount of time – almost eight-and-a-half minutes (500 seconds) – needed to launch SLS and at power levels ranging between 80% to 113%.
      Image Credit: NASA/Danny Nowlin
      View the full article
  • Check out these Videos

×
×
  • Create New...