Jump to content

Science with Webb: seeing farther

Recommended Posts

Science_with_Webb_seeing_farther_card_fu Video: 00:01:00

The James Webb Space Telescope (Webb) is designed to answer fundamental questions about the Universe.

With 100 times more sensitivity than the NASA/ESA Hubble Space Telescope, and a mirror which is nearly double the size of ESA’s Herschel Space Observatory, it can detect infrared light generated by galaxies as they formed more than 13.5 billion years ago, in the aftermath of the Big Bang.

For the first time in human history we have the opportunity to directly observe the first stars and galaxies forming in the early Universe. When we observe something that is a million light-years away, what we are seeing is actually how it looked a million years ago: we are looking back in time.

The light of galaxies that are billions of light-years away travels to us through the expanding Universe, which causes its wavelength to stretch into the infrared. Webb’s infrared vision makes it a powerful time machine that will peer back over 13.5 billion years, to a time shortly after the Big Bang.

Some of Hubble’s most remarkable images were its ‘deep fields’, which used long exposures – over days – to capture thousands of galaxies in single images. They revealed the most distant galaxies ever observed till then, and showed us young galaxies when they were only a few hundred million years old and were small, compact and irregular.

Webb’s infrared sensitivity will not only look back farther in time but will also reveal dramatically more information about stars and galaxies in the early Universe. Webb’s data will also answer the compelling questions of how black holes formed and grew early on, and what influence they had on the formation and evolution of the early Universe.

Webb is an international partnership between NASA, ESA and the Canadian Space Agency (CSA).

Find out more about Webb in ESA’s launch kit.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      New images of the Orion Nebula from the NASA/ESA/CSA James Webb Space Telescope have been included in ESA’s ESASky application, which has a user-friendly interface to visualise and download astronomical data.
      View the full article
    • By NASA
      Crew members aboard the International Space Station conducted a variety of scientific investigations during the week ending Sept. 29, 2023, including FLARE.
      This JAXA (Japan Aerospace Exploration Agency) investigation explores the flammability of materials in microgravity. Current tests of materials that are used in crewed spacecraft do not consider gravity, which significantly affects combustion phenomena. The ability for flames to spread over solid materials, for example, is affected by the forces of buoyancy, which are absent in microgravity. Removing the effects of buoyancy by conducting combustion experiments in microgravity also gives researchers a better understanding of specific flame behaviors.
      JAXA astronaut Satoshi Furukawa sets up hardware for the FLARE investigation. NASA Other investigations on the space station have examined the behavior, spread, and growth of fire. This work helps guide selection of spacecraft cabin materials, improve understanding of early fire growth behavior, validate models used to determine material flammability, and identify optimal fire suppression techniques. Developing ways to prevent and extinguish fire is of critical importance to the safety of crew members and vehicles in space and in confined spaces such as aircraft on Earth. These settings limit the options for suppressing fires and can be difficult to evacuate from.
      Burning and Suppression of Solids (BASS) was one of the first investigations to examine how to extinguish a variety of fuels burning in microgravity. Putting out fires in space must consider the geometry of the flame and characteristics of the materials and methods used to extinguish it, as those used on the ground could be ineffective or even make the flame worse. Analysis of 59 BASS burn tests provided data on heat flow, flame size, effects of fuel mixture flow, and other important parameters.
      BASS-II examined the burning and extinction characteristics of a variety of fuel samples to test the hypothesis that materials burn as well if not better in microgravity than in normal gravity, given adequate ventilation and identical conditions such as pressure, oxygen concentration, and temperature. A number of papers have been published based on results from BASS-II, with findings including a report on the differences between flame spread and fuel regression and comparison of flame spread rates.
      Image of a flame burning during the BASS experiments on extinguishing burning fuels. NASA Solid Fuel Ignition and Extinction – Growth and Extinction Limit (SoFIE-GEL), a research collaboration between NASA and Roscosmos, analyzes how the temperature of a fuel affects material flammability. Researchers report that experimental observations agree with trends predicted by the models. This investigation is the first in a series using the SoFIE insert for the station’s Combustion Integrated Rack.
      ESA (European Space Agency) astronaut Samantha Cristoforetti works on the SoFIE-GEL investigation of materials flammability.NASA Saffire is a series of experiments conducted aboard uncrewed Cygnus cargo spacecraft after they depart the station. Using these cargo vehicles provides distance from the crewed station and enables tests of larger fires. Results have shown that a flame spreading over thin fabrics in microgravity reaches a steady spread rate and a limiting length, which can be used to establish the rate of heat release in a spacecraft, and found that reducing pressure slows down the flame spread.
      A sample of fabric burns inside an uncrewed Cygnus cargo craft for the Saffire-IV experiment. NASA Confined Combustion, sponsored by the ISS National Lab, examines the behavior of flame spread in confined spaces of different shapes. Confinement has been shown to have significant effects on fire characteristics and hazards. Researchers report specifics on interactions between a flame and its surrounding walls and the fate of the flame, such as growth or extinction. These data provide guidance for design of structures and fire safety codes and response in space and on Earth. Other results suggest that confinement can increase or decrease solid fuel flammability depending on conditions. Researchers also demonstrated that color pyrometry – capturing flame emission simultaneously at three broad spectral bands – can determine the temperature of a flame without disrupting its spread.
      Flame studies help keep crews in space and people on Earth safe. This research also can lead to more efficient combustion, reducing impurities and producing greener and more efficient flames for uses on Earth such as heating and transportation.
      Facebook logo @ISS @ISS@ISS_Research Instagram logo @ISS Linkedin logo @company/NASA Keep Exploring Discover More Topics
      Latest News from Space Station Research
      ISS National Laboratory
      Station Science 101: Physical Science
      International Space Station
      View the full article
    • By NASA
      3 min read
      NASA’s Webb Receives IAF Excellence in Industry Award
      The International Astronautical Federation (IAF) has awarded its Excellence in Industry Award to NASA’s James Webb Space Telescope. The award will be presented at the 2023 International Astronautical Congress, taking place in Baku, Azerbaijan, Oct. 2 through Oct. 6, 2023.   
      Artist Concept for NASA’s James Webb Space Telescope.NASA The IAF Excellence in Industry Award is intended to distinguish organizations worldwide for introducing innovative space technologies to the global marketplace.
      NASA Deputy Administrator Pam Melroy will accept the award on behalf of NASA. The award recognizes the contributions of the team that designed, developed, and now operates Webb, which also includes ESA (European Space Agency), CSA (Canadian Space Agency), NASA’s Goddard Space Flight Center, and Northrop Grumman.
      “The James Webb Space Telescope continues to astound us,” said Melroy. “We are only a little over a year into Webb’s science mission, and already it has solved longstanding mysteries about the early universe and opened up exciting new questions in the search for habitable worlds. These transformative discoveries are only possible thanks to the massive, international team that worked for decades to make Webb a reality. I can’t wait to see where Webb’s mission to explore the secrets of the universe takes us next.”
      Launched Dec. 25, 2021, after more than a decade of preparation, Webb successfully performed a complex series of deployments shortly after leaving Earth orbit.
      About a month later, the telescope reached its working orbit at the Sun-Earth L2 Lagrange point, a stable orbit in space well beyond that of the Moon. Once there and fully commissioned, the 21-foot (6.5-meter) telescope began its record-breaking work.
      Webb operates at infrared wavelengths. The combination of sensitive instrumentation with its large primary mirror allows the telescope to see farther and more clearly than any previous observatory of its kind. Discoveries from existing and newly identified targets began to accumulate almost immediately. The first images were unveiled on July 12, 2022.     
      The ever-growing list of Webb discoveries includes direct imaging of exoplanets and the identification of key molecules in their atmospheres; tracking clouds on Saturn’s moon Titan; identifying new details in a cluster of galaxies; imaging the incredibly faint rings around Uranus; capturing the galactic merger of Arp 220; discovering sand-bearing clouds on a remote exoplanet; measuring the temperature of a rocky exoplanet; detecting the most distant active supermassive black hole to date; and observing galaxies seen in their earliest years, when the universe was just 350 million years old – about two percent of its current age.
      Founded in 1951, the International Astronautical Federation is a space advocacy body with members in 75 countries, including all leading space agencies, companies, research institutions, universities, societies, associations, institutes, and museums worldwide. The Federation advances knowledge about space, supporting the development and application of space assets by promoting global cooperation.
      The James Webb Space Telescope is the world’s largest, most powerful, and most complex space science telescope ever built. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
      Rob Gutro
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Last Updated Sep 29, 2023 Editor Jamie Adkins Location Goddard Space Flight Center Related Terms
      Goddard Space Flight Center James Webb Space Telescope (JWST) View the full article
    • By NASA
      NASA has switched its primary World Wide Web addresses to a beta version of the new NASA.gov and science.nasa.gov websites, continuing the long-term development and consolidation of its public web presence. The new sites will offer visitors an improved, intuitive web design and elevated user experience.

      The ongoing work on the agency’s upgraded website is the first step to a broad new digital experience from NASA, which will include a new on-demand streaming service called NASA + and an updated NASA app. This enhanced digital presence will allow the space agency to share science, research, exploration, and innovation with the world through cohesive platforms, encouraging users to spend more time experiencing the universe through the eyes of NASA.

      This new site will be the foundation of a one-stop-shop for the agency’s missions and research, climate data, Artemis updates and more. The new, topic-driven experience will ensure easier, integrated access to NASA information currently found across the agency’s many websites.

      Design features of the new site include enlarged image formats and NASA’s collection of imagery covering all agency research and programs. NASA will continue to update and improve the site on a rolling-basis as it receives feedback from website visitors.

      This is the eighth significant update for NASA’s website, which first launched in 1993. The site won the Webby Award for best government website four times, and received the People’s Voice, voted on by the public 10 times.
      The agency will continue to connect NASA websites and multimedia libraries into this new digital experience to further streamline the information shared across its centers, missions, and programs.
      Last Updated Sep 28, 2023 Related Terms
      General View the full article
    • By NASA
      5 min read
      Marshall Teams Combine to Make Space Station Science Reality
      By Gina Hannah and Jonathan Deal
      For more than 20 years, astronauts aboard the International Space Station have worked diligently on science experiments that benefit humanity on Earth and in deep space. Getting these experiments to and from space is a multi-faceted effort across the agency. Teams at NASA’s Marshall Space Flight Center have combined their world class capabilities – before and after these experiments return from the space station – to make that cutting-edge science a reality.
      One experiment that recently returned from station is a perfect example of how the teams work together. The experiment titled “Growth of Ternary Compound Semiconductors” seeks to study crystal growth in microgravity, specifically focusing on ZnSe (zinc selenide) compounds and one of their potential applications in high-powered lasers operating in the infrared wavelengths.
      Chris Honea, a NASA Marshall Space Flight Center technician supporting payloads, unwraps a payload Aug. 18 for semiconductor research that recently arrived from the International Space Station. The experiment studied crystal growth in microgravity.NASA Six SCAs (Sample Cartridge Assemblies) launched to the space station as part of the SpaceX Commercial Resupply Service Mission-24. Using the Materials Science Laboratory on station, it aimed to cultivate crystals of zinc selenide, zinc selenide telluride, and chromium-doped zinc selenide using the physical vapor transport method. But what set this experiment apart was its core objective: to discern how gravity-driven fluid flows influenced the structural, electrical, and optical characteristics of these crystals when compared to their counterparts grown on Earth.
      As the crystals began to form, scientists, personnel from space station project office, and the thermal team of Marshall’s Test Lab, monitored their progress. In the unique environment of microgravity, fluid dynamics took on a new dimension, and the crystals flourished under those conditions.
      “Without gravity, we have better control because weight itself can cause defects and affect the growth pattern,” said Dr. Ching Hua Su, the experiment’s principal investigator. “Our main goal is to study the effect of gravity on vapor transport crystal growth. When dealing with materials that melt at higher temperatures, vapor growth lowers the temperature and contributes fewer defects. That’s why we chose zinc selenide for our applications.”
      Su is a member of the Materials Science and Metallurgy Branch in Marshall’s Materials and Processing Lab. That team also works on the engineering projects ranging from additive manufacturing, welding to metallurgy for fuel tanks and engines.
      On Earth, quality ZnSe-based crystals are used in various optical applications, with implications for cutting edge-technologies such as optical windows, infrared lasers, and optical wavelength conversion devices. Being able to conduct the experiment in a microgravity environment, scientists have gained insights that could enhance the quality of these crystals, thus paving the way for revolutionary advances in optical technology.
      “We are now on the brink of completing our sixth flight experiment,” Su said.
      We are eager to compare our space-grown samples with those from the ground, conducting two more runs on this duplicate furnace in the test lab at Marshall to facilitate direct comparisons.Take time to debrief after success or conflict. Listen, then restate messages to make sure they're understood.
      Dr. Ching Hua Su
      Materials Science and Metallurgy Branch in Marshall’s Materials and Processing Lab
      Ensuring the science conducted on the payload is successful is a team effort, and work on the mission begins years before the payload launches.
      “We have a payload operation integration specialist and a payload activity requirement coordinator who work with the payload developer to write procedures and document timing constraints,” said Jennifer McMillian, payload operations manager for the International Space Station Increment 69 management team.
      Those procedures include determining the length of the experiment, proper installation of the cartridge, and defining the type of ground support needed. Planners then work those activities into the mission timeline so the payload can be scheduled into the workflow on the Materials Science Research Rack after it arrives on the space station.
      Scheduling the work takes into consideration both crew time and station resources, including power, water, and the vacuum exhaust system.
      “We’re involved in all of the planning. We have the whole increment team that is working on building a plan, say, six months out, and then refining that plan daily as we get closer to execution,” McMillian said.
      Once the payload enters the rack, the team’s work is round-the-clock.
      “When we get to real-time execution, the payload rack officers here are responsible for commanding to the rack, applying all of the resources to that rack to enable the science,” she said.
      The astronauts will use the instructions written by the payload operations integration specialist to process the run, usually for about a week. The process is repeated for each of the samples in the payload before being returned to Earth.
      The work is an international effort. As payloads are being processed, a team at Marshall monitors the rack, and a European Space Agency team in Munich, Germany, adjusts parameters for each specific investigation in the rack, McMillian said.
      “When we’re in the middle of execution, we’re in the monitoring phase, and react to any anomalous situation we may see,” she said.
      With the crystals now back on Earth, Su and his team are hoping the experiment will lead to new frontiers in crystal growth and the endless possibilities it holds for both space and terrestrial applications.
      Hannah, a Media Fusion employee, supports Marshall’s Office of Communications and Strategic Analysis, and Deal, a public affairs officer, supports the Marshall Office of Communications.
      Last Updated Sep 28, 2023 Related Terms
      General Explore More
      2 min read NASA Publishes Beta Flagship, Science Websites as Improvements Continue
      Article 6 hours ago 4 min read Eleasa Kim: Supporting NASA’s Commercial Low-Earth Orbit Development Program
      Article 7 hours ago 4 min read Marshall Bids Farewell to Former Center Director with Retirement Ceremony
      Article 7 hours ago Keep Exploring Discover Related Topics
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

  • Create New...