Jump to content

Science with Webb: seeing farther


Recommended Posts

Science_with_Webb_seeing_farther_card_fu Video: 00:01:00

The James Webb Space Telescope (Webb) is designed to answer fundamental questions about the Universe.

With 100 times more sensitivity than the NASA/ESA Hubble Space Telescope, and a mirror which is nearly double the size of ESA’s Herschel Space Observatory, it can detect infrared light generated by galaxies as they formed more than 13.5 billion years ago, in the aftermath of the Big Bang.

For the first time in human history we have the opportunity to directly observe the first stars and galaxies forming in the early Universe. When we observe something that is a million light-years away, what we are seeing is actually how it looked a million years ago: we are looking back in time.

The light of galaxies that are billions of light-years away travels to us through the expanding Universe, which causes its wavelength to stretch into the infrared. Webb’s infrared vision makes it a powerful time machine that will peer back over 13.5 billion years, to a time shortly after the Big Bang.

Some of Hubble’s most remarkable images were its ‘deep fields’, which used long exposures – over days – to capture thousands of galaxies in single images. They revealed the most distant galaxies ever observed till then, and showed us young galaxies when they were only a few hundred million years old and were small, compact and irregular.

Webb’s infrared sensitivity will not only look back farther in time but will also reveal dramatically more information about stars and galaxies in the early Universe. Webb’s data will also answer the compelling questions of how black holes formed and grew early on, and what influence they had on the formation and evolution of the early Universe.

Webb is an international partnership between NASA, ESA and the Canadian Space Agency (CSA).

Find out more about Webb in ESA’s launch kit.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      James Webb Telescope Discovers A Smelly Planet!
    • By European Space Agency
      Image: Ariane 6 science-after-school experiment sends back striking snaps View the full article
    • By NASA
      3 min read
      Science Activation’s PLACES Team Facilitates Second Professional Learning Institute
      The NASA Science Activation Program’s Place-Based Learning to Advance Connections, Education, and Stewardship (PLACES) team successfully led their second Professional Learning (PL) Summer Institute (SI) at Northern Arizona University (NAU) in Flagstaff, Arizona from June 11-13, 2024. The team led a group of 13 educators through a variety of powerful place-based data-rich (PBDR) experiences across the three-day SI. PL kicked off with teachers engaging in an intensive field experience at Hat Ranch that leveraged the ecological expertise of NAU’s subject matter expert, Jared Litson Begay, and using data collection protocols from the NASA-sponsored program, GLOBE (Global Learning and Observations to Benefit the Environment) to better understand piñon pine populations in Flagstaff ecosystems. Following this, teachers moved from their primary data collection experiences to exploring secondary data that expanded on the piñon pine focus by leveraging data and the Data Literacy Cubes from My NASA Data (MND).
      Using and reflecting on GLOBE protocols created powerful conversations where teachers saw how place influenced how they engaged in data collection and how data can help develop new place-based knowledge and connections in their contexts. One teacher even shared that “collecting data using the GLOBE app and making observations about data helped me better understand how I can use these practices with my students.” The MND data and Data Literacy Cubes offered educators the pathways to move from their primary data collection experiences to ask and answer new and exciting questions.
      In the follow-up survey, teachers shared that they are interested in exploring “additional resources from NASA,” using “local experts or data for small town/rural areas through NASA,” and implementing PBDR instruction using NASA assets in the coming months. 100% of teachers who were surveyed after the PL indicated (1) they agree or strongly agree that they feel greater connection to NASA and knowledge of NASA assets, and (2) they would recommend the PLACES PL to a colleague. In the coming months, the teachers will participate in a virtual Community of Practice where they will implement PBDR experiences in their own contexts, share examples of student work, and elicit feedback from one another to continue improving their practice.
      The PLACES team would like to give a huge shout-out to those who contributed to planning, developing, and implementing the NAU Summer Institute!
      Facilitation Team: Sean Michael Ryan (NAU), Lori Rubino-Hare (NAU), Karen Lionberger (WestEd), Frieda Richsman (Concord Consortium) Support Team: Lauren Schollenberger (NAU) Team Member Participants: Barbie Buckner (NASA Langley), Tracy Ostrom (GLOBE, UC Berkeley), Sara Salisbury (WestEd) Observers: Kirsten Dehler, Nicole Wong (WestEd) PLACES is supported by NASA under cooperative agreement award number 80NSSC22M0005 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Summer Institute participant uses the GLOBE observer app in the field to gather data on the height of trees at Hat Ranch in Flagstaff, AZ. Share








      Details
      Last Updated Jul 17, 2024 Editor NASA Science Editorial Team Related Terms
      Earth Science Science Activation Explore More
      2 min read Celebrate the Heliophysics Big Year with Free Heliophysics and Math Webinars from NASA HEAT


      Article


      1 week ago
      2 min read NASA’s Neurodiversity Network Interns Speak at National Space Development Conference


      Article


      1 week ago
      1 min read NASA Science Activation Teams Present at National Rural STEM Summit


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      NASA’s Galileo spacecraft took this image of Earth’s Moon on Dec. 7, 1992, on its way to explore the Jupiter system in 1995-97. The distinct bright ray crater at the bottom of the image is the Tycho impact basin.Credit: NASA NASA will hold a media teleconference at 4 p.m. EDT, Wednesday, July 17, to provide an update on a program within NASA’s Exploration Science Strategy and Integration Office.
      Audio of the teleconference will stream live on the agency’s website at:
      https://www.nasa.gov/nasatv
      Participants in the teleconference include:
      Nicola Fox, associate administrator, Science Mission Directorate, NASA Headquarters Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters To ask questions during the teleconference, media must RSVP no later than two hours before the event to Erin Morton at: erin.morton@nasa.gov. NASA’s media accreditation policy is available online.
      The Exploration Science Strategy Integration Office in NASA’s Science Mission Directorate ensures science is infused into all aspects of lunar exploration. Through researching the Moon and its environment, and by using the Moon as an observation platform, NASA strives to gain a greater understanding of the Moon itself, the solar system, the universe, and the deep space environment.
      To learn more about NASA’s missions for lunar discovery, visit: 
      https://science.nasa.gov/lunar-science
      -end-
      Karen Fox / Erin Morton 
      Headquarters, Washington 
      202-358-1275 / 202-805-9393
      karen.fox@nasa.gov / erin.morton@nasa.gov
      Share
      Details
      Last Updated Jul 16, 2024 LocationNASA Headquarters Related Terms
      Lunar Science Science & Research Science Mission Directorate View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      In this time-lapse video of a test conducted at JPL in June 2023, an engineering model of the Planetary Instrument for X-ray Lithochemistry (PIXL) instrument aboard NASA’s Perseverance Mars rover places itself against a rock to collect data. NASA/JPL-Caltech Artificial intelligence is helping scientists to identify minerals within rocks studied by the Perseverance rover.
      Some scientists dream of exploring planets with “smart” spacecraft that know exactly what data to look for, where to find it, and how to analyze it. Although making that dream a reality will take time, advances made with NASA’s Perseverance Mars rover offer promising steps in that direction.
      For almost three years, the rover mission has been testing a form of artificial intelligence that seeks out minerals in the Red Planet’s rocks. This marks the first time AI has been used on Mars to make autonomous decisions based on real-time analysis of rock composition.
      PIXL, the white instrument at top left, is one of several science tools located on the end of the robotic arm aboard NASA’s Perseverance rover. The Mars rover’s left navcam took the images that make up this composite on March 2, 2021NASA/JPL-Caltech The software supports PIXL (Planetary Instrument for X-ray Lithochemistry), a spectrometer developed by NASA’s Jet Propulsion Laboratory in Southern California. By mapping the chemical composition of minerals across a rock’s surface, PIXL allows scientists to determine whether the rock formed in conditions that could have been supportive of microbial life in Mars’ ancient past.
      Called “adaptive sampling,” the software autonomously positions the instrument close to a rock target, then looks at PIXL’s scans of the target to find minerals worth examining more deeply. It’s all done in real time, without the rover talking to mission controllers back on Earth.
      “We use PIXL’s AI to home in on key science,” said the instrument’s principal investigator, Abigail Allwood of JPL. “Without it, you’d see a hint of something interesting in the data and then need to rescan the rock to study it more. This lets PIXL reach a conclusion without humans examining the data.”
      This image of a rock target nicknamed “Thunderbolt Peak” was created by NASA’s Perseverance Mars rover using PIXL, which determines the mineral composition of rocks by zapping them with X-rays. Each blue dot in the image represents a spot where an X-ray hit.NASA/JPL-Caltech/DTU/QUT Data from Perseverance’s instruments, including PIXL, helps scientists determine when to drill a core of rock and seal it in a titanium metal tube so that it, along with other high-priority samples, could be brought to Earth for further study as part of NASA’s Mars Sample Return campaign.
      Adaptive sampling is not the only application of AI on Mars. About 2,300 miles (3,700 kilometers) from Perseverance is NASA’s Curiosity, which pioneered a form of AI that allows the rover to autonomously zap rocks with a laser based on their shape and color. Studying the gas that burns off after each laser zap reveals a rock’s chemical composition. Perseverance features this same ability, as well as a more advanced form of AI that enables it to navigate without specific direction from Earth. Both rovers still rely on dozens of engineers and scientists to plan each day’s set of hundreds of individual commands, but these digital smarts help both missions get more done in less time.
      “The idea behind PIXL’s adaptive sampling is to help scientists find the needle within a haystack of data, freeing up time and energy for them to focus on other things,” said Peter Lawson, who led the implementation of adaptive sampling before retiring from JPL. “Ultimately, it helps us gather the best science more quickly.”
      Using AI to Position PIXL
      AI assists PIXL in two ways. First, it positions the instrument just right once the instrument is in the vicinity of a rock target. Located at the end of Perseverance’s robotic arm, the spectrometer sits on six tiny robotic legs, called a hexapod. PIXL’s camera repeatedly checks the distance between the instrument and a rock target to aid with positioning.
      Temperature swings on Mars are large enough that Perseverance’s arm will expand or contract a microscopic amount, which can throw off PIXL’s aim. The hexapod automatically adjusts the instrument to get it exceptionally close without coming into contact with the rock.
      “We have to make adjustments on the scale of micrometers to get the accuracy we need,” Allwood said. “It gets close enough to the rock to raise the hairs on the back of an engineer’s neck.”
      Making a Mineral Map
      Once PIXL is in position, another AI system gets the chance to shine. PIXL scans a postage-stamp-size area of a rock, firing an X-ray beam thousands of times to create a grid of microscopic dots. Each dot reveals information about the chemical composition of the minerals present.
      Minerals are crucial to answering key questions about Mars. Depending on the rock, scientists might be on the hunt for carbonates, which hide clues to how water may have formed the rock, or they may be looking for phosphates, which could have provided nutrients for microbes, if any were present in the Martian past.
      There’s no way for scientists to know ahead of time which of the hundreds of X-ray zaps will turn up a particular mineral, but when the instrument finds certain minerals, it can automatically stop to gather more data — an action called a “long dwell.” As the system improves through machine learning, the list of minerals on which PIXL can focus with a long dwell is growing.
      “PIXL is kind of a Swiss army knife in that it can be configured depending on what the scientists are looking for at a given time,” said JPL’s David Thompson, who helped develop the software. “Mars is a great place to test out AI since we have regular communications each day, giving us a chance to make tweaks along the way.”
      When future missions travel deeper into the solar system, they’ll be out of contact longer than missions currently are on Mars. That’s why there is strong interest in developing more autonomy for missions as they rove and conduct science for the benefit of humanity.
      More About the Mission
      A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith (broken rock and dust).
      Subsequent NASA missions, in cooperation with ESA (European Space Agency), would send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
      The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
      JPL, which is managed for NASA by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.
      For more about Perseverance:
      mars.nasa.gov/mars2020/
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Alana Johnson
      NASA Headquarters, Washington
      202-358-1600 / 202-358-1501
      karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
      2024-099
      Share
      Details
      Last Updated Jul 16, 2024 Related Terms
      Perseverance (Rover) Astrobiology High-Tech Computing Jet Propulsion Laboratory Mars Mars 2020 Radioisotope Power Systems (RPS) Robotics Science-enabling Technology Explore More
      1 min read NASA Science Activation Teams Present at National Rural STEM Summit
      NASA Science Activation (SciAct) teams participated in the National Rural STEM (Science, Technology, Engineering, &…
      Article 2 weeks ago 4 min read NASA’s Planetary Radar Tracks Two Large Asteroid Close Approaches
      Article 2 weeks ago 3 min read NASA’s ECOSTRESS Maps Burn Risk Across Phoenix Streets
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...