Jump to content

Huge Sphere shooting out of the sun


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s 2001 Mars Odyssey orbiter captured this single image of Olympus Mons, the tallest volcano in the solar system, on March 11, 2024. Besides providing an unprecedented view of the volcano, the image helps scientists study different layers of material in the atmosphere, including clouds and dust.NASA/JPL-Caltech/ASU The 23-year-old orbiter is taking images that offer horizon-wide views of the Red Planet similar to what astronauts aboard the International Space Station see over Earth.
      NASA’s longest-lived Mars robot is about to mark a new milestone on June 30: 100,000 trips around the Red Planet since launching 23 years ago. During that time, the 2001 Mars Odyssey orbiter has been mapping minerals and ice across the Martian surface, identifying landing sites for future missions, and relaying data to Earth from NASA’s rovers and landers.
      Scientists recently used the orbiter’s camera to take a stunning new image of Olympus Mons, the tallest volcano in the solar system. The image is part of a continuing effort by the Odyssey team to provide high-altitude views of the planet’s horizon. (The first of these views was published in late 2023.) Similar to the perspective of Earth astronauts get aboard the International Space Station, the view enables scientists to learn more about clouds and airborne dust at Mars.
      Taken on March 11, the most recent horizon image captures Olympus Mons in all its glory. With a base that sprawls across 373 miles (600 kilometers), the shield volcano rises to a height of 17 miles (27 kilometers).
      “Normally we see Olympus Mons in narrow strips from above, but by turning the spacecraft toward the horizon we can see in a single image how large it looms over the landscape,” said Odyssey’s project scientist, Jeffrey Plaut of NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission. “Not only is the image spectacular, it also provides us with unique science data.”
      In addition to offering a freeze frame of clouds and dust, such images, when taken across many seasons, can give scientists a more detailed understanding of the Martian atmosphere.
      This infographic highlights just how much data and how many images NASA’s 2001 Mars Odyssey orbiter has collected in its 23 years of operation around the Red Planet.NASA/JPL-Caltech A bluish-white band at the bottom of the atmosphere hints at how much dust was present at this location during early fall, a period when dust storms typically start kicking up. The purplish layer above that was likely due to a mixture of the planet’s red dust with some bluish water-ice clouds. Finally, toward the top of the image, a blue-green layer can be seen where water-ice clouds reach up about 31 miles (50 kilometers) into the sky.
      How They Took the Picture
      Named after Arthur C. Clarke’s classic science-fiction novel “2001: A Space Odyssey,” the orbiter captured the scene with a heat-sensitive camera called the Thermal Emission Imaging System, or THEMIS, which Arizona State University in Tempe built and operates. But because the camera is meant to look down at the surface, getting a horizon shot takes extra planning.
      By firing thrusters located around the spacecraft, Odyssey can point THEMIS at different parts of the surface or even slowly roll over to view Mars’ tiny moons, Phobos and Deimos.
      The recent horizon imaging was conceived as an experiment many years ago during the landings of NASA’s Phoenix mission in 2008 and Curiosity rover in 2012. As with other Mars landings before and after those missions touched down, Odyssey played an important role relaying data as the spacecraft barreled toward the surface.
      Laura Kerber, deputy project scientist for NASA’s Mars Odyssey orbiter, explains how and why the spacecraft in May 2023 captured a view of the Red Planet similar to the International Space Station’s view of Earth.
      Credit: NASA/JPL-Caltech To relay their vital engineering data to Earth, Odyssey’s antenna had to be aimed toward the newly arriving spacecraft and their landing ellipses. Scientists were intrigued when they noticed that positioning Odyssey’s antenna for the task meant that THEMIS would be pointed at the planet’s horizon.
      “We just decided to turn the camera on and see how it looked,” said Odyssey’s mission operations spacecraft engineer, Steve Sanders of Lockheed Martin Space in Denver. Lockheed Martin built Odyssey and helps conduct day-to-day operations alongside the mission leads at JPL. “Based on those experiments, we designed a sequence that keeps THEMIS’ field-of-view centered on the horizon as we go around the planet.”
      The Secret to a Long Space Odyssey
      What’s Odyssey secret to being the longest continually active mission in orbit around a planet other than Earth?
      “Physics does a lot of the hard work for us,” Sanders said. “But it’s the subtleties we have to manage again and again.”
      These variables include fuel, solar power, and temperature. To ensure Odyssey uses its fuel (hydrazine gas) sparingly, engineers have to calculate how much is left since the spacecraft doesn’t have a fuel gauge. Odyssey relies on solar power to operate its instruments and electronics. This power varies when the spacecraft disappears behind Mars for about 15 minutes per orbit. And temperatures need to stay balanced for all of Odyssey’s instruments to work properly.
      “It takes careful monitoring to keep a mission going this long while maintaining a historical timeline of scientific planning and execution — and innovative engineering practices,” said Odyssey’s project manager, Joseph Hunt of JPL. “We’re looking forward to collecting more great science in the years ahead.”
      More about Odyssey:
      https://science.nasa.gov/mission/odyssey/
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Charles Blue
      NASA Headquarters, Washington
      202-358-1600 / 202-802-5345
      karen.c.fox@nasa.gov / charles.e.blue@nasa.gov
      2024-092
      Share
      Details
      Last Updated Jun 27, 2024 Related Terms
      Mars Odyssey Deimos Jet Propulsion Laboratory Mars Mars Moons Phobos Explore More
      5 min read Detective Work Enables Perseverance Team to Revive SHERLOC Instrument
      Article 21 hours ago 6 min read NASA’s Juno Gets a Close-Up Look at Lava Lakes on Jupiter’s Moon Io
      Article 23 hours ago 5 min read Why Scientists Are Intrigued by Air in NASA’s Mars Sample Tubes
      Article 7 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Science in Space: June 2024
      The Sun wields a huge influence on Earth. Its gravity holds our planet in its orbit, and solar energy drives the seasons, ocean currents, weather, climate, radiation belts, and auroras on Earth.
      The solar wind, a flow of charged particles from the Sun, constantly bombards Earth’s magnetosphere, a vast magnetic shield around the planet. The Sun occasionally releases massive amounts of energy, creating solar geomagnetic storms that can interfere with communications and navigation and disrupt the electric power grid.
      The colorful aurora borealis or Northern Lights and aurora australis or Southern Lights are created by the transfer of energy from solar electrons to molecules in Earth’s upper atmosphere. Those molecules then release that energy in the form of light. Different molecules create specific colors, such as green from oxygen.
      Because Earth’s magnetic field directs solar electrons toward the poles, auroras typically are visible only at high latitudes, such as in Canada in the north and Australia in the south. But solar storms can send the lights into much lower latitudes. During a series of large solar eruptions in May 2024, for example, the display could be seen as far south as Texas and California.
      Satellites captured auroras visible across the globe on May 11, 2024.NOAA NASA has multiple missions studying how the Sun and solar storms affect Earth and space travel. The International Space Station contributes to this research in several ways. 
      Improved Solar Energy Measurements
      The station’s Total and Spectral Solar Irradiance Sensor (TSIS) measures solar irradiance, the solar energy Earth receives, and solar spectral irradiance, a measure of the Sun’s energy in individual wavelengths. Knowing the magnitude and variability of solar irradiance improves understanding of Earth’s climate, atmosphere, and oceans and enables more accurate predictions of space weather. Better predictions could in turn help protect humans and satellites in space and electric power transmission and radio communications on the ground. 
      The first five years of TSIS observations demonstrated improved long-term spectral readings and lower uncertainties than measurements from a previous NASA mission, the Solar Radiation and Climate satellite. The accuracy of TSIS observations could improve models of solar irradiance variability and contribute to a long-term record of solar irradiance data. 
      Earlier Sun Monitoring
      Installation of the Solar instruments on the space station during a spacewalk.NASA The ESA (European Space Agency) Sun Monitoring on the External Payload Facility of Columbus, or Solar, collected data on solar energy output for more than a decade with three instruments covering most wavelengths of the electromagnetic spectrum. Different wavelengths emitted by the Sun are absorbed by and influence Earth’s atmosphere and contribute to our climate and weather. This monitoring helps scientists see how solar irradiance affects Earth and provides data to create models for predicting its influence. 
      One instrument, the Solar Variable and Irradiance Monitor, covered the near-ultraviolet, visible, and thermal parts of the spectrum and helped improve the accuracy of these measurements.  
      The SOLar SPECtral Irradiance Measurement instrument covered higher ranges of the solar spectrum. Its observations highlighted significant differences from previous solar reference spectra and models. Researchers also reported that repeated observations made it possible to determine a reference spectrum for the first year of the SOLAR mission, which corresponded to a solar minimum prior to Solar Cycle 24. 
      Solar activity rises and falls over roughly 11-year cycles. The current Solar Cycle 25 began in December 2019, and scientists predicted a peak in solar activity between January and October of 2024, which included the May storms. 
      The third instrument, SOLar Auto-Calibrating EUV/UV Spectrometers, measured the part of the solar spectrum between extreme ultraviolet and ultraviolet. Most of this highly energetic radiation is absorbed by the upper atmosphere, making it impossible to measure from the ground. Results suggested that these instruments could overcome the problem of degrading sensitivity seen with other solar measuring devices and provide more efficient data collection. 
      Auroras from Space
      An aurora borealis display photographed from the International Space Station.NASA Astronauts occasionally photograph the aurora borealis from the space station and post these images.  
      For the CSA (Canadian Space Agency) AuroraMAX project, crew members photographed the aurora borealis over Yellowknife, Canada, between fall 2011 and late spring 2012. The space images, coordinated with a network of ground-based observatories across Canada, contributed to an interactive display at an art and science festival to inspire public interest in how solar activity affects Earth. The project also provides a live feed of the aurora borealis online every September through April.  
      Student Satellites
      Deployment of the Miniature X-ray Solar Spectrometer and other CubeSats from the space station.NASA The Miniature X-ray Solar Spectrometer CubeSat measured variation in solar X-ray activity to help scientists understand how it affects Earth’s upper atmosphere. Solar X-ray activity is enhanced during solar flares. Students at the University of Colorado Laboratory for Atmospheric Space Physics built the satellite, which deployed from the space station in early 2016. 
      Better data help scientists understand how solar events affect satellites, crewed missions, and infrastructure in space and on the ground. Ongoing efforts to measure how Earth’s atmosphere responds to solar storms are an important part of NASA’s plans for Artemis missions to the Moon and for later missions to Mars. 

      Melissa Gaskill 
      International Space Station Research Communications Team 
      NASA’s Johnson Space Center 

      Search this database of scientific experiments to learn more about those mentioned above. 
      Keep Exploring Discover Related Topics
      Latest News from Space Station Research
      Sun
      Overview The Sun’s gravity holds the solar system together, keeping everything – from the biggest planets to the smallest particles…
      NASA Heliophysics
      Overview The Science Mission Directorate Heliophysics Division studies the nature of the Sun, and how it influences the very nature…
      Station Science 101: Earth and Space Science

      View the full article
    • By European Space Agency
      The hyperactive sunspot region responsible for the beautiful auroras earlier in May was still alive and kicking when it rotated away from Earth’s view. Watching from the other side of the Sun, the ESA-led Solar Orbiter mission detected this same region producing the largest solar flare of this solar cycle. By observing the Sun from all sides, ESA missions reveal how active sunspot regions evolve and persist, which will help improve space weather forecasting.
      View the full article
    • By NASA
      4 min read
      NASA’s OSIRIS-APEX Unscathed After Searing Pass of Sun
      Mission engineers were confident NASA’s OSIRIS-APEX (Origins, Spectral Interpretation, Resource Identification – Apophis Explorer) spacecraft could weather its closest ever pass of the Sun on Jan. 2, 2024. Their models had predicted that, despite traveling 25 million miles closer to the heat of the Sun than it was originally designed to, OSIRIS-APEX and its components would remain safe.
      The mission team confirmed that the spacecraft indeed had come out of the experience unscathed after downloading stored telemetry data in mid-March. The team also tested OSIRIS-APEX’s instruments in early April, once the spacecraft was far enough from the Sun to return to normal operations. Between December 2023 and March, OSIRIS-APEX was inactive, with only limited telemetry data available to the team on Earth.
      Both these images from a camera called StowCam aboard OSIRIS-APEX show the same view taken six months apart, before (left) and after (right) the Jan. 2, 2024, perihelion. Notably, there is no observable difference on spacecraft surfaces, a good indication that the higher temperatures faced during perihelion didn’t alter the spacecraft. Another insight gleaned from the identical view in the two images is that the camera’s performance was also not affected by perihelion. StowCam, a color imager, is one of three cameras comprising TAGCAMS (the Touch-and-Go Camera System), which is part of OSIRIS-APEX’s guidance, navigation, and control system. TAGCAMS was designed, built and tested by Malin Space Science Systems; Lockheed Martin integrated TAGCAMS to the OSIRIS-APEX spacecraft and operates TAGCAMS. The spacecraft’s clean bill of health was due to creative engineering. Engineers placed OSIRIS-APEX in a fixed orientation with respect to the Sun and repositioned one of its two solar arrays to shade the spacecraft’s most sensitive components during the pass.
      The spacecraft is in an elliptical orbit around the Sun that brings it to a point closest to the Sun, called a perihelion, about every nine months. To get on a path that will allow it to meet up with its new target Apophis in 2029, the spacecraft’s trajectory includes several perihelions that are closer to the Sun than the spacecraft’s components were originally designed to withstand.
      “It’s phenomenal how well our spacecraft configuration protected OSIRIS-APEX, so I’m really encouraged by this first close perihelion pass,” said Ron Mink, mission systems engineer for OSIRIS-APEX, based at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      Besides confirming that the January perihelion worked out according to predictions, engineers found surprises while testing spacecraft components. A couple of instruments came out better than expected after exposure to higher temperatures.
      A camera that helped map asteroid Bennu and will do the same at Apophis, saw a 70% reduction in “hot pixels” since April 13, 2023, the last time it was tested. Hot pixels, which are common in well-used cameras in space, show up as white spots in images when detectors accumulate exposure to high-energy radiation, mostly from our Sun.
      “We think the heat from the Sun reset the pixels through annealing,” said Amy Simon, OSIRIS-APEX project scientist, based at NASA Goddard. Annealing is a heat process that can restore function of instruments and is often done intentionally through built-in heaters on some spacecraft.
      Captured on Oct. 20, 2020, as NASA’s OSIRIS-REx spacecraft collected a sample from the surface of asteroid Bennu, this series of 82 images shows the SamCam imager’s field of view as the spacecraft approached and touched Bennu’s surface. OSIRIS-REx’s sampling head touched Bennu’s surface for approximately 6 seconds, after which the spacecraft performed a back-away burn. Credit: NASA/Goddard/University of Arizona Another welcome surprise, said Simon, came from the spacecraft’s visible and near-infrared spectrometer. Before perihelion, the spectrometer, which mapped the surface composition of Bennu, and will do the same at Apophis, seemed to have a rock from Bennu stuck inside its calibration port. Scientist suspected that some sunlight was blocked from filtering through the instrument after the spacecraft, then called OSIRIS-REx, grabbed a sample from asteroid Bennu on Oct. 20, 2020. By picking up the sample and then firing its engines to back away from Bennu, the spacecraft stirred up dust and pebbles that clung to it.
      “But, with enough spacecraft maneuvers and engine burns after sample collection,” Simon said, the rock in the calibration port appears to have been dislodged. Scientists will check the spectrometer again when OSIRIS-APEX swings by Earth on Sept. 25, 2025, for a gravitational boost.
      OSIRIS-APEX is now operating normally as it continues its journey toward asteroid Apophis for a 2029 rendezvous. Its better-than-expected performance during the first close perihelion is welcome news. But engineers caution that it doesn’t mean it’s time to relax. OSIRIS-APEX needs to execute five more exceptionally close passes of the Sun — along with three Earth gravity assists — to get to its destination. It’s unclear how the cumulative effect of six perihelions at a closer distance than designed will impact the spacecraft and its components.
      The second OSIRIS-APEX perihelion is scheduled for Sept. 1, 2024. The spacecraft will be 46.5 million miles away from the Sun, which is roughly half the distance between Earth and the Sun, and well inside the orbit of Venus.

      Learn more about the OSIRIS-APEX mission to Apophis

      By Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      View the full article
  • Check out these Videos

×
×
  • Create New...