Members Can Post Anonymously On This Site
Strange moving lights in the sky
-
Similar Topics
-
By NASA
3 Min Read September’s Night Sky Notes: Marvelous Moons
Jupiter’s largest moons, from left to right: Io, Europa, Ganymede, Callisto. Credits:
NASA by Kat Troche of the Astronomical Society of the Pacific
September brings the gas giants Jupiter and Saturn back into view, along with their satellites. And while we organize celebrations to observe our own Moon this month, be sure to grab a telescope or binoculars to see other moons within our Solar System! We recommend observing these moons (and planets!) when they are at their highest in the night sky, to get the best possible unobstructed views.
The More the Merrier
As of September 2024, the ringed planet Saturn has 146 identified moons in its orbit. These celestial bodies range in size; the smallest being a few hundred feet across, to Titan, the second largest moon in our solar system.
The Saturnian system along with various moons around the planet Saturn: Iapetus, Titan, Enceladus, Rhea, Tethys, and Dione. Stellarium Web Even at nearly 900 million miles away, Titan can be easily spotted next to Saturn with a 4-inch telescope, under urban and suburban skies, due to its sheer size. With an atmosphere of mostly nitrogen with traces of hydrogen and methane, Titan was briefly explored in 2005 with the Huygens probe as part of the Cassini-Huygens mission, providing more information about the surface of Titan. NASA’s mission Dragonfly is set to explore the surface of Titan in the 2030s.
Enceladus is an icy world much like Hoth, except that it has an ocean under its frozen crust. Astronomers believe this moon of Saturn may be a good candidate for having extraterrestrial life beneath its surface. NASA/ESA/JPL-Caltech/Space Science Institute Saturn’s moon Enceladus was also explored by the Cassini mission, revealing plumes of ice that erupt from below the surface, adding to the brilliance of Saturn’s rings. Much like our own Moon, Enceladus remains tidally locked with Saturn, presenting the same side towards its host planet at all times.
The Galilean Gang
The King of the Planets might not have the most moons, but four of Jupiter’s 95 moons are definitely the easiest to see with a small pair of binoculars or a small telescope because they form a clear line. The Galilean Moons – Ganymede, Callisto, Io, and Europa – were first discovered in 1610 and they continue to amaze stargazers across the globe.
The Jovian system: Europa, Io, Ganymede, and Callisto. Stellarium Web Ganymede: largest moon in our solar system, and larger than the planet Mercury, Ganymede has its own magnetic field and a possible saltwater ocean beneath the surface. Callisto: this heavily cratered moon is the third largest in our solar system. Although Callisto is the furthest away of the Galilean moons, it only takes 17 days to complete an orbit around Jupiter. Io: the closest moon and third largest in this system, Io is an extremely active world, due to the push and pull of Jupiter’s gravity. The volcanic activity of this rocky world is so intense that it can be seen from some of the largest telescopes here on Earth. Europa: Jupiter’s smallest moon also happens to be the strongest candidate for a liquid ocean beneath the surface. NASA’s Europa Clipper is set to launch October 2024 and will determine if this moon has conditions suitable to support life. Want to learn more? Rewatch the July 2023 Night Sky Network webinar about Europa Clipper here. Be sure to celebrate International Observe the Moon Night here on Earth September 14, 2024, leading up to the super full moon on September 17th! You can learn more about supermoons in our mid-month article on the Night Sky Network page!
View the full article
-
By European Space Agency
On 8 September 2024, the first of four Cluster satellites will return home and burn up in the Earth’s atmosphere in an uncontrolled ‘targeted reentry’ over a remote area of the South Pacific Ocean.
In the nearly 70 years of spaceflight about 10 000 intact satellites and rocket bodies have reentered the atmosphere. Yet we still lack a clear view on what actually happens during a reentry.
An airborne observation experiment will now attempt to witness the ‘Salsa’ (Cluster 2) reentry. Scientists onboard a small plane will try to collect rare data on how and when a satellite breaks up, which can be used to make satellite reentries safer and more sustainable in the future.
View the full article
-
By NASA
4 min read
NASA Citizen Scientists Spot Object Moving 1 Million Miles Per Hour
This artist’s concept shows a hypothetical white dwarf, left, that has exploded as a supernova. The object at right is CWISE J1249, a star or brown dwarf ejected from this system as a result of the explosion. This scenario is one explanation for where CWISE J1249 came from. W.M. Keck Observatory/Adam Makarenko Most familiar stars peacefully orbit the center of the Milky Way. But citizen scientists working on NASA’s Backyard Worlds: Planet 9 project have helped discover an object moving so fast that it will escape the Milky Way’s gravity and shoot into intergalactic space. This hypervelocity object is the first such object found with the mass similar to or less than that of a small star.
Backyard Worlds uses images from NASA’s WISE, or Wide Field Infrared Explorer, mission, which mapped the sky in infrared light from 2009 to 2011. It was re-activated as NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer) in 2013 and retired on Aug. 8, 2024.
A few years ago, longtime Backyard Worlds citizen scientists Martin Kabatnik, Thomas P. Bickle, and Dan Caselden spotted a faint, fast-moving object called CWISE J124909.08+362116.0, marching across their screens in the WISE images. Follow-up observations with several ground-based telescopes helped scientists confirm the discovery and characterize the object. These citizen scientists are now co-authors on the team’s study about this discovery published in the Astrophysical Journal Letters (a pre-print version is available here).
“I can’t describe the level of excitement,” said Kabatnik, a citizen scientist from Nuremberg, Germany. “When I first saw how fast it was moving, I was convinced it must have been reported already.”
CWISE J1249 is zooming out of the Milky Way at about 1 million miles per hour. But it also stands out for its low mass, which makes it difficult to classify as a celestial object. It could be a low-mass star, or if it doesn’t steadily fuse hydrogen in its core, it would be considered a brown dwarf, putting it somewhere between a gas giant planet and a star.
Ordinary brown dwarfs are not that rare. Backyard Worlds: Planet 9 volunteers have discovered more than 4,000 of them! But none of the others are known to be on their way out of the galaxy.
This new object has yet another unique property. Data obtained with the W. M. Keck Observatory in Maunakea, Hawaii, show that it has much less iron and other metals than other stars and brown dwarfs. This unusual composition suggests that CWISE J1249 is quite old, likely from one of the first generations of stars in our galaxy.
Why does this object move at such high speed? One hypothesis is that CWISE J1249 originally came from a binary system with a white dwarf, which exploded as a supernova when it pulled off too much material from its companion. Another possibility is that it came from a tightly bound cluster of stars called a globular cluster, and a chance meeting with a pair of black holes sent it soaring away.
“When a star encounters a black hole binary, the complex dynamics of this three-body interaction can toss that star right out of the globular cluster,” says Kyle Kremer, incoming assistant professor in UC San Diego’s Department of Astronomy and Astrophysics.
Scientists will look more closely at the elemental composition of CWISE J1249 for clues about which of these scenarios is more likely.
This discovery has been a team effort on multiple levels—a collaboration involving volunteers, professionals, and students. Kabatnik credits other citizen scientists with helping him search, including Melina Thévenot, who “blew my mind with her personal blog about doing searches using Astronomical Data Query Language,” he said. Software written by citizen scientist Frank Kiwy was also instrumental in this finding, he said.
The study is led by Backyard Worlds: Planet 9 science team member Adam Burgasser, a professor at the University of California, San Diego, and includes co-authors Hunter Brooks and Austin Rothermich, astronomy students who both began their astronomy careers as citizen scientists.
Become a citizen scientist
Want to help discover the next extraordinary space object? Join the Backyard Worlds: Planet 9 now — participation is open to anyone in any country worldwide.
Podcast
Check out this NASA’s Curious Universe podcast episode to hear personal stories from citizen scientists engaged NASA-related projects.
Media contact
Elizabeth Landau
Headquarters, Washington
202-358-0845
elandau@nasa.gov
View the full article
-
By USH
Mount Kailash is a mountain in Ngari Prefecture, Tibet Autonomous Region of China. It lies in the Kailash Range of the Transhimalaya, in the western part of the Tibetan Plateau. The peak of Mount Kailash is located at an elevation of 6,638 m, near the trijunction between China, India and Nepal.
In Tibetan Buddhism, Mount Kailash holds a special place as the Axis Mundi, or the center of the universe. Imagine it as the heart of everything, where heaven and earth meet. This sacred mountain isn't just a random peak; it's like the cosmic hub, connecting different realms together.
In the year 1999, an expedition of Russian Scientists led by Dr Ernst Muldashev claimed that Mount Kailash is too perfectly shaped for a natural mountain. They have discovered that the top of Mt. Kailash is actually a man-made vacuum pyramid. It is surrounded by more than 100 other small pyramids. According to preliminary estimates, the direct height of the pyramid complex is between 100 and 1,800 meters, while the Egyptian pyramid is only 146 meters
It is also believed to be the site of Lord Shiva, the god of destruction and rebirth as well as where the first human beings were created.
According to the legend Shiva has left a giant footprint on the summit of the mountain. Despite extensive searches, no concrete evidence of this footprint has ever been found.
While exploring Mount Kailash on Google Earth, I spotted a large, unusual anomaly near the summit. It resembles two hands, each with four visible fingers, positioned opposite each other and seemingly carved into the rock.
Could these huge hands be a kind of a 'footprint' of Shiva that people have been searching for?
As for climbing up the summit, some daring mountaineers have attempted to do so, but with no luck. It also is said that who climb Mount Kailash age quickly. The time that human takes to age two weeks only take 12 hours in the mountain. Numerous hikers have detailed that they feel like their nails and hairs are developing rapidly within 12 hours.
Trekking all the way up to the peak of Mount Kailash is held to be a forbidden act among Hindus for the fear of trespassing the sanctity of the mountain and disturbing the divine energies residing there.
Even planes don't fly over Kailash as Mount Kailash is said to possess a mysterious magnetic anomaly that disrupts navigational instruments and disrupts compass readings. This phenomenon has puzzled scientists with no concrete explanation offered to date.
Coordinates: 31° 4'4.83"N 81°18'24.47"E
Mount Kailash is still a mystery. The unconquered peak remains wrapped in myths, legends, and spiritual tales.View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This artist’s concept shows how NASA’s Curiosity Mars rover was lowered to the planet’s surface using the sky crane maneuver.NASA / JPL-Caltech The rocket-powered descent stage that lowered NASA’s Curiosity onto the Martian surface is guided over the rover by technicians at the agency’s Kennedy Space Center in September 2011, two months before the mission’s launch. NASA/Kim Shiflett Twelve years ago, NASA landed its six-wheeled science lab using a daring new technology that lowers the rover using a robotic jetpack.
NASA’s Curiosity rover mission is celebrating a dozen years on the Red Planet, where the six-wheeled scientist continues to make big discoveries as it inches up the foothills of a Martian mountain. Just landing successfully on Mars is a feat, but the Curiosity mission went several steps further on Aug. 5, 2012, touching down with a bold new technique: the sky crane maneuver.
A swooping robotic jetpack delivered Curiosity to its landing area and lowered it to the surface with nylon ropes, then cut the ropes and flew off to conduct a controlled crash landing safely out of range of the rover.
Of course, all of this was out of view for Curiosity’s engineering team, which sat in mission control at NASA’s Jet Propulsion Laboratory in Southern California, waiting for seven agonizing minutes before erupting in joy when they got the signal that the rover landed successfully.
Encased in its aeroshell, NASA’s Curiosity rover descended through the Martian atmosphere on a parachute on Aug. 5, 2012. The scene was captured from far above by the High Resolution Imaging Science Experiment (HiRISE) camera aboard NASA’s Mars Reconnaissance Orbiter.NASA/JPL-Caltech/University of Arizona This was one of the first images sent back by NASA’s Curiosity Mars rover after landing on Aug. 5, 2012. It was taken by the one of the hazard-avoidance camera on the rover’s left-rear side.NASA/JPL-Caltech The sky crane maneuver was born of necessity: Curiosity was too big and heavy to land as its predecessors had — encased in airbags that bounced across the Martian surface. The technique also added more precision, leading to a smaller landing ellipse.
During the February 2021 landing of Perseverance, NASA’s newest Mars rover, the sky crane technology was even more precise: The addition of something called terrain relative navigation enabled the SUV-size rover to touch down safely in an ancient lake bed riddled with rocks and craters.
Watch as NASA’s Perseverance rover lands on Mars in 2021 with the same sky crane maneuver Curiosity used in 2012.
Credit: NASA/JPL-Caltech Evolution of a Mars Landing
JPL has been involved in NASA’s Mars landings since 1976, when the lab worked with the agency’s Langley Research Center in Hampton, Virginia, on the two stationary Viking landers, which touched down using expensive, throttled descent engines.
How We Land on Mars For the 1997 landing of the Mars Pathfinder mission, JPL proposed something new: As the lander dangled from a parachute, a cluster of giant airbags would inflate around it. Then three retrorockets halfway between the airbags and the parachute would bring the spacecraft to a halt above the surface, and the airbag-encased spacecraft would drop roughly 66 feet (20 meters) down to Mars, bouncing numerous times — sometimes as high as 50 feet (15 meters) — before coming to rest.
The entry, descent, and landing team for NASA’s Curiosity Mars rover celebrates the spacecraft’s touchdown on Aug. 5, 2012. Al Chen, who was part of the team, is at right.Curiosity Landing Team Celebrates It worked so well that NASA used the same technique to land the Spirit and Opportunity rovers in 2004. But that time, there were only a few locations on Mars where engineers felt confident the spacecraft wouldn’t encounter a landscape feature that could puncture the airbags or send the bundle rolling uncontrollably downhill.
“We barely found three places on Mars that we could safely consider,” said JPL’s Al Chen, who had critical roles on the entry, descent, and landing teams for both Curiosity and Perseverance.
It also became clear that airbags simply weren’t feasible for a rover as big and heavy as Curiosity. If NASA wanted to land bigger spacecraft in more scientifically exciting locations, better technology was needed.
Rover on a Rope
In early 2000, engineers began playing with the concept of a “smart” landing system. New kinds of radars had become available to provide real-time velocity readings — information that could help spacecraft control their descent. A new type of engine could be used to nudge the spacecraft toward specific locations or even provide some lift, directing it away from a hazard. The sky crane maneuver was taking shape.
JPL Fellow Rob Manning worked on the initial concept in February 2000, and he remembers the reception it got when people saw that it put the jetpack above the rover rather than below it.
“People were confused by that,” he said. “They assumed propulsion would always be below you, like you see in old science fiction with a rocket touching down on a planet.”
Manning and colleagues wanted to put as much distance as possible between the ground and those thrusters. Besides stirring up debris, a lander’s thrusters could dig a hole that a rover wouldn’t be able to drive out of. And while past missions had used a lander that housed the rovers and extended a ramp for them to roll down, putting thrusters above the rover meant its wheels could touch down directly on the surface, effectively acting as landing gear and saving the extra weight of bringing along a landing platform.
But engineers were unsure how to suspend a large rover from ropes without it swinging uncontrollably. Looking at how the problem had been solved for huge cargo helicopters on Earth (called sky cranes), they realized Curiosity’s jetpack needed to be able to sense the swinging and control it.
“All of that new technology gives you a fighting chance to get to the right place on the surface,” said Chen.
Best of all, the concept could be repurposed for larger spacecraft — not only on Mars, but elsewhere in the solar system. “In the future, if you wanted a payload delivery service, you could easily use that architecture to lower to the surface of the Moon or elsewhere without ever touching the ground,” said Manning.
More About the Mission
Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington.
For more about Curiosity, visit:
science.nasa.gov/mission/msl-curiosity
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Alana Johnson
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
2024-104
Share
Details
Last Updated Aug 07, 2024 Related Terms
Curiosity (Rover) Jet Propulsion Laboratory Mars Mars Science Laboratory (MSL) Radioisotope Power Systems (RPS) Explore More
2 min read Tech Today: Flipping NASA Tech and Sticking the Landing
NASA tech adds gecko grip to phone accessory
Article 1 day ago 6 min read Quantum Scale Sensors used to Measure Planetary Scale Magnetic Fields
Magnetic fields are everywhere in our solar system. They originate from the Sun, planets, and…
Article 1 day ago 4 min read AstroViz: Iconic Pillars of Creation Star in NASA’s New 3D Visualization
NASA’s Universe of Learning – a partnership among the Space Telescope Science Institute (STScI), Caltech/IPAC,…
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.