Jump to content

NASA, Partner to Highlight Passenger-Friendly Aviation Technology


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Mass Spectrometer Observing Lunar Operations (MSolo) for NASA’s Volatile Investigating Polar Exploration Rover (VIPER) mission is prepared for packing inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida on Feb. 21, 2023. MSolo is a commercial off-the-shelf mass spectrometer modified to work in space and it will help analyze the chemical makeup of landing sites on the Moon, as well as study water on the lunar surface.NASA/Kim Shiflett A NASA-developed technology that recently proved its capabilities in the harsh environment of space will soon head back to the Moon to search for gases trapped under the lunar surface thanks to a new Cooperative Research and Development Agreement between NASA and commercial company Magna Petra Corp.
      The Mass Spectrometer Observing Lunar Operations (MSOLO) successfully demonstrated the full range of its hardware in lunar conditions during the Intuitive Machines 2 mission earlier this year. Under the new agreement, a second MSOLO, mounted on a commercial rover, will launch to the Moon no earlier than 2026. Once on the lunar surface, it will measure low molecular weight volatiles in hopes of inferring the presence of rare isotopes, such as Helium-3, which is theorized to exist, trapped in the regolith, or lunar dust, of the Moon.
      “This new mission opportunity will help us determine what volatiles are present in the lunar surface, while also providing scientific insight for Magna Petra’s goals,” said Roberto Aguilar Ayala, research physicist at NASA’s Kennedy Space Center in Florida. “Learning more about the lunar volatiles and their isotopes supports NASA’s goal of sustaining long-term human space exploration. We will need to extract resources locally to enhance the capabilities of our astronauts to further exploration opportunities on the lunar surface.”
      The MSOLO instrument will be integrated on a commercial rover, selected by Magna Petra. The rover will allow MSOLO to gather the data needed for researchers to understand which low-molecular weight gases reside within the Moon’s surface.
      NASA will work with the partner to integrate MSOLO so that it will function properly with the rover, and the partner will analyze and share data in real time with NASA to understand the location of these volatiles on the Moon and their ability to be extracted in the future.
      Magna Petra hopes to understand the presence of Helium-3 isotope within the Moon’s surface, with the ultimate goal of collecting it and bringing it back to Earth for use in a variety of industries, including energy production through nuclear fusion, quantum computing, health care, and specialized laboratory equipment.
      The MSOLO instrument began as a commercial off-the-shelf mass spectrometer designed to analyze volatiles used in the manufacturing of semi-conductors, which helped keep NASA’s development costs down. NASA modified the device to withstand the rigors of spaceflight and the Moon’s harsh conditions. On its first journey to the Moon, MSOLO was part of the Polar Resources Ice Mining Experiment 1.
      Signed on April 2, the reimbursable agreement is the first of its kind established at NASA Kennedy. Under the agreement, Magna Petra will reimburse NASA for costs such as supporting MSOLO integration and testing with the rover, pre-mission preparation and mission operations of the instruments, and expertise in system engineering, avionics, and software.
      “This innovative agreement promises to provide valuable data to both partners,” said Jonathan Baker, chief of Spaceport Development at NASA Kennedy. “This approach demonstrates NASA’s commitment to finding unique ways to work with commercial industry to help advance technology in a fiscally responsible way and enabling innovation for the benefit of humankind.”
      Throughout the mission, NASA will retain ownership of MSOLO. Once the mission is complete, the instrument will no longer have access to power and communications and will remain on the surface of the Moon. The valuable data gathered during the mission will be submitted to the Planetary Data System for public dissemination.
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      https://youtu.be/63uNNcCpxHI How are we made of star stuff?

      Well, the important thing to understand about this question is that it’s not an analogy, it’s literally true.

      The elements in our bodies, the elements that make up our bones, the trees we see outside, the other planets in the solar system, other stars in the galaxy. These were all part of stars that existed well before our Sun and Earth and solar system were even formed.

      The universe existed for billions of years before we did. And all of these elements that you see on the periodic table, you see carbon and oxygen and silicon and iron, the common elements throughout the universe, were all put there by previous generations of stars that either blew off winds like the Sun blows off a solar wind, or exploded in supernova explosions and thrust their elements throughout the universe.

      These are the same things that we can trace with modern telescopes, like the Hubble Telescope and the James Webb Space Telescope, the Chandra X-ray Observatory. These are all elements that we can map out in the universe with these observatories and trace back to the same things that form us and the elemental abundances that we see in stars now are the same things that we see in the Earth’s crust, we see in asteroids. And so we know that these are the same elements that were once part of these stars.

      So the question of, “How are we made of star stuff?”, in the words of Carl Sagan, “The cosmos is within us. We are made of star stuff. We are a way for the universe to know itself.”

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated Apr 28, 2025 Related Terms
      General Astrophysics Astrophysics Division Chandra X-Ray Observatory Hubble Space Telescope James Webb Space Telescope (JWST) Origin & Evolution of the Universe Science Mission Directorate The Solar System The Universe Explore More
      3 min read NASA Moon Observing Instrument to Get Another Shot at Lunar Ops
      Article 16 mins ago 5 min read NASA 3D Wind Measuring Laser Aims to Improve Forecasts from Air, Space
      Article 1 hour ago 1 min read Earth Science Showcase – Kids Art Collection
      Article 3 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 Min Read NASA 3D Wind Measuring Laser Aims to Improve Forecasts from Air, Space
      3D wind measurements from NASA's Aerosol Wind Profiler instrument flying on board a specially mounted aircraft along the East Coast of the U.S. and across the Great Lakes region on Oct. 15, 2024. Credits: NASA/Scientific Visualization Studio Since last fall, NASA scientists have flown an advanced 3D Doppler wind lidar instrument across the United States to collect nearly 100 hours of data — including a flight through a hurricane. The goal? To demonstrate the unique capability of the Aerosol Wind Profiler (AWP) instrument to gather extremely precise measurements of wind direction, wind speed, and aerosol concentration – all crucial elements for accurate weather forecasting.
      Weather phenomena like severe thunderstorms and hurricanes develop rapidly, so improving predictions requires more accurate wind observations.
      “There is a lack of global wind measurements above Earth’s surface,” explained Kris Bedka, the AWP principal investigator at NASA’s Langley Research Center in Hampton, Virginia. “Winds are measured by commercial aircraft as they fly to their destinations and by weather balloons launched up to twice per day from just 1,300 sites across the globe. From space, winds are estimated by tracking cloud and water vapor movement from satellite images.”
      However, in areas without clouds or where water vapor patterns cannot be easily tracked, there are typically no reliable wind measurements. The AWP instrument seeks to fill these gaps with detailed 3D wind profiles.
      The AWP instrument (foreground) and HALO instrument (background) was integrated onto the floorboard of NASA’s G-III aircraft. Kris Bedka, project principal investigator, sitting in the rear of the plane, monitored the data during a flight on Sept. 26, 2024. NASA/Maurice Cross Mounted to an aircraft with viewing ports underneath it, AWP emits 200 laser energy pulses per second that scatter and reflect off aerosol particles — such as pollution, dust, smoke, sea salt, and clouds — in the air. Aerosol and cloud particle movement causes the laser pulse wavelength to change, a concept known as the Doppler effect.
      The AWP instrument sends these pulses in two directions, oriented 90 degrees apart from each other. Combined, they create a 3D profile of wind vectors, representing both wind speed and direction.
      We are measuring winds at different altitudes in the atmosphere simultaneously with extremely high detail and accuracy.
      Kris bedka
      NASA Research Physical Scientist
      “The Aerosol Wind Profiler is able to measure wind speed and direction, but not just at one given point,” Bedka said. “Instead, we are measuring winds at different altitudes in the atmosphere simultaneously with extremely high detail and accuracy.”
      Vectors help researchers and meteorologists understand the weather, so AWP’s measurements could significantly advance weather modeling and forecasting. For this reason, the instrument was chosen to be part of the National Oceanic and Atmospheric Administration’s (NOAA) Joint Venture Program, which seeks data from new technologies that can fill gaps in current weather forecasting systems. NASA’s Weather Program also saw mutual benefit in NOAA’s investments and provided additional support to increase the return on investment for both agencies.
      On board NASA’s Gulfstream III (G-III) aircraft, AWP was paired with the agency’s High-Altitude Lidar Observatory (HALO) that measures water vapor, aerosols, and cloud properties through a combined differential absorption and high spectral resolution lidar.
      Working together for the first time, AWP measured winds, HALO collected water vapor and aerosol data, and NOAA dropsondes (small instruments dropped from a tube in the bottom of the aircraft) gathered temperature, water vapor, and wind data.
      The AWP and HALO instrument teams observing incoming data on board NASA’s G-III aircraft over Tennessee while heading south to observe Hurricane Helene. Sept. 26, 2024. NASA/Maurice Cross “With our instrument package on board small, affordable-to-operate aircraft, we have a very powerful capability,” said Bedka. “The combination of AWP and HALO is NASA’s next-generation airborne weather remote sensing package, which we hope to also fly aboard satellites to benefit everyone across the globe.”
      The combination of AWP and HALO is NASA's next-generation airborne weather remote sensing package.
      kris bedka
      NASA Research Physical Scientist
      The animation below, based on AWP data, shows the complexity and structure of aerosol layers present in the atmosphere. Current prediction models do not accurately simulate how aerosols are organized throughout the breadth of the atmosphere, said Bedka.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This visualization shows AWP 3D measurements gathered on Oct. 15, 2024, as NASA’s G-III aircraft flew along the East Coast of the U.S. and across the Great Lakes region. Laser light that returns to AWP as backscatter from aerosol particles and clouds allows for measurement of wind direction, speed, and aerosol concentration as seen in the separation of data layers. NASA/Scientific Visualization Studio “When we took off on this particular day, I thought that we would be finding a clear atmosphere with little to no aerosol return because we were flying into what was the first real blast of cool Canadian air of the fall,” described Bedka. “What we found was quite the opposite: an aerosol-rich environment which provided excellent signal to accurately measure winds.” 
      During the Joint Venture flights, Hurricane Helene was making landfall in Florida. The AWP crew of two pilots and five science team members quickly created a flight plan to gather wind measurements along the outer bands of the severe storm.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This video shows monitors tracking the AWP science team’s location in the western outer bands of Hurricane Helene off the coast of Florida with views outside of the aircraft looking at turbulent storm clouds on Sept. 26, 2024. NASA/Kris Bedka “A 3D wind profile can significantly improve weather forecasts, particularly for storms and hurricanes,” said Harshesh Patel, NOAA’s acting Joint Venture Program manager. “NASA Langley specializes in the development of coherent Doppler wind lidar technology and this AWP concept has potential to provide better performance for NOAA’s needs.”
      The flight plan of NASA’s G-III aircraft – outfitted with the Aerosol Wind Profiler – as it gathered data across the Southeastern U.S. and flew through portions of Hurricane Helene on Sept. 26, 2024. The flight plan is overlaid atop a NOAA Geostationary Operational Environmental Satellite-16 (GOES) satellite image from that day. NASA/John Cooney The flights of the AWP lidar are serving as a proving ground for possible integration into a future satellite mission.
      “The need to improve global 3D wind models requires a space-based platform,” added Patel. “Instruments like AWP have specific space-based applications that potentially align with NOAA’s mission to provide critical data for improving weather forecasting.”
      A view of the outer bands of Hurricane Helene off the coast of Florida during NASA’s science flights demonstrating the Aerosol Wind Profiler instrument on Sept. 26, 2024.NASA/Maurice Cross After the NOAA flights, AWP and HALO were sent to central California for the Westcoast & Heartland Hyperspectral Microwave Sensor Intensive Experiment  and the Active Passive profiling Experiment, which was supported by NASA’s Planetary Boundary Layer Decadal Survey Incubation Program and NASA Weather Programs. These missions studied atmospheric processes within the planetary boundary layer, the lowest part of the atmosphere, that drives the weather conditions we experience on the ground. 
      To learn more about lidar instruments at NASA visit:
      NASA Langley Research Center: Generations of Lidar Expertise
      About the Author
      Charles G. Hatfield
      Science Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Apr 28, 2025 LocationNASA Langley Research Center Related Terms
      General Airborne Science Clouds Langley Research Center Explore More
      3 min read Lunar Space Station Module for NASA’s Artemis Campaign to Begin Final Outfitting
      Article 3 days ago 4 min read Navigation Technology
      Article 3 days ago 3 min read NASA Tracks Snowmelt to Improve Water Management
      Article 4 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By USH
      Shape-Shifting Materials are advanced, adaptive materials capable of changing their physical form, embedding sensors and circuits directly into their structure, and even storing energy,  all without traditional wiring. Lockheed Martin is at the forefront of developing these futuristic materials, raising questions about the possible extraterrestrial origin of this technology. 

      In a previous article, we discussed why suppressed exotic technologies are suddenly being disclosed. One company that frequently comes up in this conversation is Lockheed Martin, the American defense and aerospace giant known for pushing the boundaries of aviation and space innovation. 
      Imagine an aircraft that can grow its own skin, embed sensors into its body, store energy without wires, and even shift its shape mid-flight to adapt to changing conditions. This isn’t science fiction anymore, Lockheed Martin’s cutting-edge research is turning these futuristic concepts into reality. 
      But where is all this coming from? 
      The rapid development and creativity behind Lockheed Martin’s projects raise intriguing questions. Whistleblowers like David Grusch have recently alleged that Lockheed Martin has had access to recovered UFO materials for decades. Supporting this, Don Phillips,  a former Lockheed engineer,  confirmed years ago that exotic materials have been held and studied by the company since at least the 1950s. 
      This suggests that for over half a century, Lockheed has secretly been engaged in researching and reverse-engineering off-world technologies. It's possible that the breakthroughs we’re seeing today are the result of this hidden legacy. Ben Rich, former head of Lockheed’s Skunk Works division, famously hinted at this when he said, "We now have the technology to take ET home." 
      One particularly stunning development involves "smart" materials that behave almost like muscles, allowing aircraft structures to morph in real-time. These materials enable a craft to fine-tune its aerodynamics on the fly, adjusting instantly to turbulence, speed shifts, or mission-specific demands. 
      Lockheed’s innovations go even further. By embedding carbon nanotubes, extremely strong and highly conductive microscopic structure, directly into the material, they have created surfaces that can transfer information and power without traditional wiring. In these next-generation aircraft, the "skin" itself acts as the nervous system, the energy grid, and the sensor network all at once. 
      You can only imagine the kinds of technologies that have been developed over the years through the reverse engineering of exotic materials and recovered extraterrestrial craft. Yet, governments and space agencies remain tight-lipped about the existence of advanced alien civilizations, who likely introduced these techniques to Earth unintentionally.
        View the full article
    • By NASA
      4 Min Read Navigation Technology
      ESA astronaut Matthias Maurer sets up an Astrobee for the ReSWARM experiment. Credits: NASA Science in Space April 2025
      Humans have always been explorers, venturing by land and sea into unknown and uncharted places on Earth and, more recently, in space. Early adventurers often navigated by the Sun and stars, creating maps that made it easier for others to follow. Today, travelers on Earth have sophisticated technology to guide them.
      Navigation in space, including for missions to explore the Moon and Mars, remains more of a challenge. Research on the International Space Station is helping NASA scientists improve navigation tools and processes for crewed spacecraft and remotely controlled or autonomous robots to help people boldly venture farther into space, successfully explore there, and safely return home.
      NASA astronaut Nichole Ayers talks to students on the ground using ham radio equipment.NASA A current investigation, NAVCOM, uses the space station’s ISS Ham Radio program hardware to test software for a system that could shape future lunar navigation. The technology processes signals in the same way as global navigation satellite systems such as GPS, but while those rely on constellations of satellites, the NAVCOM radio equipment receives position and time information from ground stations and reference clocks.
      The old made new
      ESA astronaut Alexander Gerst operates the Sextant Navigation device.NASA Sextant Navigation tested star-sighting from space using a hand-held sextant. These mechanical devices measure the angle between two objects, typically the Sun or other stars at night and the horizon. Sextants guided navigators on Earth for centuries and NASA’s Gemini and Apollo missions demonstrated that they were useful in space as well, meaning they could provide emergency backup navigation for lunar missions. Researchers report that with minimal training and practice, crew members of different skill levels produced quality sightings through a station window and measurements improved with more use. The investigation identified several techniques for improving sightings, including refocusing between readings and adjusting the sight to the center of the window.
      Navigating by neutron stars
      The station’s NICER instrument studies the nature and behavior of neutron stars, the densest objects in the universe. Some neutron stars, known as pulsars, emit beams of light that appear to pulse, sweeping across the sky as the stars rotate. Some of them pulse at rates as accurate as atomic clocks. As part of the NICER investigation, the Station Explorer for X-ray Timing and Navigation Technology or SEXTANT tested technology for using pulsars in GPS-like systems to navigate anywhere in the solar system. SEXTANT successfully completed a first in-space demonstration of this technology in 2017. In 2018, researchers reported that real-time, autonomous X-ray pulsar navigation is clearly feasible and they plan further experiments to fine tune and modify the technology.
      Robot navigation
      Crews on future space exploration missions need efficient and safe ways to handle cargo and to move and assemble structures on the surface of the Moon or Mars. Robots are promising tools for these functions but must be able to navigate their surroundings, whether autonomously or via remote control, often in proximity with other robots and within the confines of a spacecraft. Several investigations have focused on improving navigation by robotic helpers.
      NASA astronaut Michael Barratt (left) and JAXA astronaut Koichi Wakata perform a check of the SPHERES robots.NASA The SPHERES investigation tested autonomous rendezvous and docking maneuvers with three spherical free-flying robots on the station. Researchers reported development of an approach to control how the robots navigate around obstacles and along a designated path, which could support their use in the future for satellite servicing, vehicle assembly, and spacecraft formation flying.
      NASA astronaut Megan McArthur with the three Astrobee robots.NASA The station later gained three cube-shaped robots known as Astrobees. The ReSWARM experiments used them to test coordination of multiple robots with each other, cargo, and their environment. Results provide a base set of planning and control tools for robotic navigation in close proximity and outline important considerations for the design of future autonomous free-flyers.
      Researchers also used the Astrobees to show that models to predict the robots’ behavior could make it possible to maneuver one or two of them for carrying cargo. This finding suggests that robots can navigate around each other to perform tasks without a human present, which would increase their usefulness on future missions.
      ESA astronaut Samantha Cristoforetti working on the Surface Avatar experiment.ESA An investigation from ESA (European Space Agency), Surface Avatar evaluated orbit-to-ground remote control of multiple robots. Crew members successfully navigated a four-legged robot, Bert, through a simulated Mars environment. Robots with legs rather than wheels could explore uneven lunar and planetary surfaces that are inaccessible to wheeled rovers. The German Aerospace Center is developing Bert.

      View the full article
  • Check out these Videos

×
×
  • Create New...