Jump to content

The Sun”s Getting Active - Recent Solar Flares and Eruptions


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Launched in December 2013, ESA’s Gaia spacecraft is on a mission to map the locations and motions of more than a billion stars in the Milky Way with extreme precision.
      But it’s not easy being a satellite: space is a dangerous place. In recent months, hyper-velocity space dust and the strongest solar storm in 20 years have threatened Gaia’s ability to carry out the precise measurements for which it is famous.
      View the full article
    • By NASA
      3 min read
      NASA Mission to Study Mysteries in the Origin of Solar Radio Waves
      NASA’s CubeSat Radio Interferometry Experiment, or CURIE, is scheduled to launch July 9, 2024, to investigate the unresolved origins of radio waves coming from the Sun.
      CURIE will investigate where solar radio waves originate in coronal mass ejections, like this one seen in 304- and 171-angstrom wavelengths by NASA’s Solar Dynamics Observatory. NASA/Goddard Space Flight Center Scientists first noticed these radio waves decades ago, and over the years they’ve determined the radio waves come from solar flares and giant eruptions on the Sun called coronal mass ejections, or CMEs, which are a key driver of space weather that can impact satellite communications and technology at Earth. But no one knows where the radio waves originate within a CME.
      The CURIE mission aims to advance our understanding using a technique called low frequency radio interferometry, which has never been used in space before. This technique relies on CURIE’s two independent spacecraft — together no bigger than a shoebox — that will orbit Earth about two miles apart. This separation allows CURIE’s instruments to measure tiny differences in the arrival time of radio waves, which enables them to determine exactly where the radio waves came from.
      “This is a very ambitious and very exciting mission,” said Principal Investigator David Sundkvist, a researcher at the University of California, Berkeley. “This is the first time that someone is ever flying a radio interferometer in space in a controlled way, and so it’s a pathfinder for radio astronomy in general.”
      CURIE team members work on integrating the satellites into the CubeSat deployer. ExoLaunch The spacecraft, designed by a team from UC Berkeley, will measure radio waves ranging 0.1 to 19 megahertz to pinpoint the radio waves’ solar origin. These wavelengths are blocked by Earth’s upper atmosphere, so this research can only be done from space.
      CURIE will launch aboard an ESA (European Space Agency) Ariane 6 rocket in early July from the Guiana Space Center in Kourou, French Guiana. The rocket will take CURIE to 360 miles above Earth’s surface, where it can get a clear view of the Sun’s radio waves.
      Once in its circular orbit, the two adjoined CURIE spacecraft will establish communication with ground stations before orienting and separating. When the separated satellites are in formation, their dual eight-foot antennas will deploy and start collecting data.
      CURIE is sponsored by NASA’s Heliophysics Flight Opportunities for Research and Technology (H-FORT) Program and is the sole mission manifested on the NASA CubeSat Launch Initiative’s ELaNa (Educational Launch of Nanosatellites) 43 mission. As a pathfinder, CURIE will demonstrate a proof-of-concept for space-based radio interferometry in the CubeSat form factor. CURIE will also pave the way for the upcoming Sun Radio Interferometer Space Experiment, or SunRISE, mission. SunRISE will employ six CubeSats to map the region where the solar radio waves originate in 2-D.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Jul 08, 2024 Editor Abbey Interrante Related Terms
      CubeSat Launch Initiative CubeSats ELaNa (Educational Launch of Nanosatellites) Goddard Space Flight Center Heliophysics Heliophysics Division Heliophysics Research Program Science Mission Directorate Small Satellite Missions SunRISE (Sun Radio Interferometer Space Experiment) The Sun The Sun & Solar Physics Explore More
      5 min read First of NASA’s SunRISE SmallSats Rolls Off Production Line
      Six of these small satellites will work together, creating the largest radio telescope ever launched…


      Article


      2 years ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      2 min read
      Hubble Examines an Active Galaxy Near the Lion’s Heart
      This NASA/ESA Hubble Space Telescope features the elliptical galaxy Messier 105. ESA/Hubble & NASA, C. Sarazin et al. It might appear featureless and unexciting at first glance, but NASA/ESA Hubble Space Telescope observations of this elliptical galaxy — known as Messier 105 — show that the stars near the galaxy’s center are moving very rapidly. Astronomers have concluded that these stars are zooming around a supermassive black hole with an estimated mass of 200 million Suns! This black hole releases huge amounts of energy as it consumes matter falling into it, making the system an active galactic nucleus that causes the galaxy’s center to shine far brighter than its surroundings.
      Hubble also surprised astronomers by revealing a few young stars and clusters in Messier 105, a galaxy thought to be “dead” and incapable of star formation. Astronomers now think that Messier 105 forms roughly one Sun-like star every 10,000 years. Astronomers also spotted star-forming activity in a vast ring of hydrogen gas encircling both Messier 105 and its closest neighbor, the lenticular galaxy NGC 3384.
      Discovered in 1781, Messier 105 lies about 30 million light-years away in the constellation of Leo (The Lion) and is the brightest elliptical galaxy within the Leo I galaxy group.
      Text Credit: European Space Agency (ESA)

      Download the image

      Explore More

      Hubble Space Telescope


      Hubble’s Galaxies


      Hubble’s Messier Catalog: Messier 105

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Jun 27, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Elliptical Galaxies Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Hubble Space Telescope Missions The Universe Keep Exploring Explore More With Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      What Did Hubble See on Your Birthday?



      Name That Nebula



      Hubble E-books


      View the full article
    • By European Space Agency
      The hyperactive sunspot region responsible for the beautiful auroras earlier in May was still alive and kicking when it rotated away from Earth’s view. Watching from the other side of the Sun, the ESA-led Solar Orbiter mission detected this same region producing the largest solar flare of this solar cycle. By observing the Sun from all sides, ESA missions reveal how active sunspot regions evolve and persist, which will help improve space weather forecasting.
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The specks in this scene were caused by charged particles from a solar storm hitting a camera aboard NASA’s Curiosity Mars rover. Curiosity uses its navigation cameras to try and capture images of dust devils and wind gusts, like the one seen here.NASA/JPL-Caltech NASA’s Curiosity Mars rover captured black-and-white streaks and specks using one of its navigation cameras just as particles from a solar storm arrived on the Martian surface. These visual artifacts are caused by energetic particles hitting the camera’s image detector.NASA/JPL-Caltech In addition to producing auroras, a recent extreme storm provided more detail on how much radiation future astronauts could encounter on the Red Planet.
      Mars scientists have been anticipating epic solar storms ever since the Sun entered a period of peak activity earlier this year called solar maximum. Over the past month, NASA’s Mars rovers and orbiters have provided researchers with front-row seats to a series of solar flares and coronal mass ejections that have reached Mars — in some cases, even causing Martian auroras.
      This science bonanza has offered an unprecedented opportunity to study how such events unfold in deep space, as well as how much radiation exposure the first astronauts on Mars could encounter.
      The biggest event occurred on May 20 with a solar flare later estimated to be an X12 — X-class solar flares are the strongest of several types — based on data from the Solar Orbiter spacecraft, a joint mission between ESA (European Space Agency) and NASA. The flare sent out X-rays and gamma rays toward the Red Planet, while a subsequent coronal mass ejection launched charged particles. Moving at the speed of light, the X-rays and gamma rays from the flare arrived first, while the charged particles trailed slightly behind, reaching Mars in just tens of minutes.
      The unfolding space weather was closely tracked by analysts at the Moon to Mars Space Weather Analysis Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, which flagged the possibility of incoming charged particles following the coronal mass ejection.
      If astronauts had been standing next to NASA’s Curiosity Mars rover at the time, they would have received a radiation dose of 8,100 micrograys — equivalent to 30 chest X-rays. While not deadly, it was the biggest surge measured by Curiosity’s Radiation Assessment Detector, or RAD, since the rover landed 12 years ago.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      The purple color in this video shows auroras on Mars’ nightside as detected by the ultraviolet instrument aboard NASA’s MAVEN orbiter between May 14 and 20, 2024. The brighter the purple, the more auroras that were present.NASA/University of Colorado/LASP RAD’s data will help scientists plan for the highest level of radiation exposure that might be encountered by astronauts, who could use on the Martian landscape for protection.
      “Cliffsides or lava tubes would provide additional shielding for an astronaut from such an event. In Mars orbit or deep space, the dose rate would be significantly more,” said RAD’s principal investigator, Don Hassler of Southwest Research Institute’s Solar System Science and Exploration Division in Boulder, Colorado. “I wouldn’t be surprised if this active region on the Sun continues to erupt, meaning even more solar storms at both Earth and Mars over the coming weeks.”
      During the May 20 event, so much energy from the storm struck the surface that black-and-white images from Curiosity’s navigation cameras danced with “snow” — white streaks and specks caused by charged particles hitting the cameras.
      Similarly, the star camera NASA’s 2001 Mars Odyssey orbiter uses for orientation was inundated with energy from solar particles, momentarily going out. (Odyssey has other ways to orient itself, and recovered the camera within an hour.) Even with the brief lapse in its star camera, the orbiter collected vital data on X-rays, gamma rays, and charged particles using its High-Energy Neutron Detector.
      This wasn’t Odyssey’s first brush with a solar flare: In 2003, solar particles from a solar flare that was ultimately estimated to be an X45 fried Odyssey’s radiation detector, which was designed to measure such events.
      Learn how NASA’s MAVEN and the agency’s Curiosity rover will study solar flares and radiation at Mars during solar maximum – a period when the Sun is at peak activity. Credit: NASA/JPL-Caltech/GSFC/SDO/MSSS/University of Colorado Auroras Over Mars
      High above Curiosity, NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) orbiter captured another effect of the recent solar activity: glowing auroras over the planet. The way these auroras occur is different than those seen on Earth.
      Our home planet is shielded from charged particles by a robust magnetic field, which normally limits auroras to regions near the poles. (Solar maximum is the reason behind the recent auroras seen as far south as Alabama.) Mars lost its internally generated magnetic field in the ancient past, so there’s no protection from the barrage of energetic particles. When charged particles hit the Martian atmosphere, it results in auroras that engulf the entire planet.
      During solar events, the Sun releases a wide range of energetic particles. Only the most energetic can reach the surface to be measured by RAD. Slightly less energetic particles, those that cause auroras, are sensed by MAVEN’s Solar Energetic Particle instrument.
      Scientists can use that instrument’s data to rebuild a timeline of each minute as the solar particles screamed past, meticulously teasing apart how the event evolved.
      “This was the largest solar energetic particle event that MAVEN has ever seen,” said MAVEN Space Weather Lead, Christina Lee of the University of California, Berkeley’s Space Sciences Laboratory. “There have been several solar events in past weeks, so we were seeing wave after wave of particles hitting Mars.”
      New Spacecraft to Mars
      The data coming in from NASA’s spacecraft won’t only help future planetary missions to the Red Planet. It’s contributing to a wealth of information being gathered by the agency’s other heliophysics missions, including Voyager, Parker Solar Probe, and the forthcoming ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) mission.
      Targeting a late-2024 launch, ESCAPADE’s twin small satellites will orbit Mars and observe space weather from a unique dual perspective that is more detailed than what MAVEN can currently measure alone.
      More About the Missions
      Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington.
      MAVEN’s principal investigator is based at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder. LASP is also responsible for managing science operations and public outreach and communications. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the MAVEN mission. Lockheed Martin Space built the spacecraft and is responsible for mission operations. NASA’s Jet Propulsion Laboratory in Southern California provides navigation and Deep Space Network support. The MAVEN team is preparing to celebrate the spacecraft’s 10th year at Mars in September 2024.
      For more about these missions, visit:
      http://mars.nasa.gov/msl
      http://mars.nasa.gov/maven
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Charles Blue
      NASA Headquarters, Washington
      202-358-1600 / 202-802-5345
      karen.c.fox@nasa.gov / charles.e.blue@nasa.gov
      2024-080
      Share
      Details
      Last Updated Jun 10, 2024 Related Terms
      Mars Curiosity (Rover) Goddard Space Flight Center Jet Propulsion Laboratory MAVEN (Mars Atmosphere and Volatile EvolutioN) Explore More
      3 min read PACE Celebrates National Ocean Month With Colorful Views of the Planet
      Article 3 days ago 2 min read Hubble Examines a Barred Spiral’s Light
      This NASA/ESA Hubble Space Telescope image features the barred spiral galaxy NGC 3059, which lies…
      Article 3 days ago 4 min read Jonathan Lunine Appointed Chief Scientist of NASA’s Jet Propulsion Laboratory
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...