Jump to content

Coverage Set for NASA’s SpaceX Crew-2 Return to Earth


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: The Copernicus Sentinel-2 mission takes us over Riyadh, the capital city of Saudi Arabia. View the full article
    • By NASA
      Science Launching on SpaceX's 31st Cargo Resupply Mission to the Space Station
    • By NASA
      NASA and its international partners are launching scientific investigations on SpaceX’s 31st commercial resupply services mission to the International Space Station including studies of solar wind, a radiation-tolerant moss, spacecraft materials, and cold welding in space. The company’s Dragon cargo spacecraft is scheduled to launch from NASA’s Kennedy Space Center in Florida.
      Read more about some of the research making the journey to the orbiting laboratory:
      Measuring solar wind
      The CODEX (COronal Diagnostic EXperiment) examines the solar wind, creating a globally comprehensive data set to help scientists validate theories for what heats the solar wind – which is a million degrees hotter than the Sun’s surface – and sends it streaming out at almost a million miles per hour.
      The investigation uses a coronagraph, an instrument that blocks out direct sunlight to reveal details in the outer atmosphere or corona. The instrument takes multiple daily measurements that determine the temperature and speed of electrons in the solar wind, along with the density information gathered by traditional coronagraphs. A diverse international team has been designing, building, and testing the instrument since 2019 at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      Multiple missions have studied the solar wind, and CODEX could add important pieces to this complex puzzle. When the solar wind reaches Earth, it triggers auroras at the poles and can generate space weather storms that sometimes disrupt satellite and land-based communications and power grids on the ground. Understanding the source of the solar wind could help improve space-weather forecasts and response.
      A worker prepares the CODEX (COronal Diagnostic EXperiment) instrument for launch.NASA Antarctic moss in space
      A radiation tolerance experiment, ARTEMOSS, uses a live Antarctic moss, Ceratodon purpureus, to study how some plants better tolerate exposure to radiation and to examine the physical and genetic response of biological systems to the combination of cosmic radiation and microgravity. Little research has been done on how these two factors together affect plant physiology and performance, and results could help identify biological systems suitable for use in bioregenerative life support systems on future missions.
      Mosses grow on every continent on Earth and have the highest radiation tolerance of any plant. Their small size, low maintenance, ability to absorb water from the air, and tolerance of harsh conditions make them suitable for spaceflight. NASA chose the Antarctic moss because that continent receives high levels of radiation from the Sun.
      The investigation also could identify genes involved in plant adaptation to spaceflight, which might be engineered to create strains tolerant of deep-space conditions. Plants and other biological systems able to withstand the extreme conditions of space also could provide food and other necessities in harsh environments on Earth.
      A Petri plate holding Antarctic moss colonies is prepared for launch at Brookhaven National Laboratory. SETI Institute Exposing materials to space
      The Euro Material Ageing investigation from ESA (European Space Agency) includes two experiments studying how certain materials age while exposed to space. The first experiment, developed by CNES (Centre National d’Etudes Spatiales), includes materials selected from 15 European entities through a competitive evaluation process that considered novelty, scientific merit, and value for the material science and technology communities. The second experiment looks at organic samples and their stability or degradation when exposed to ultraviolet radiation not filtered by Earth’s atmosphere. The exposed samples are recovered and returned to Earth.
      Predicting the behavior and lifespan of materials used in space can be difficult because facilities on the ground cannot simultaneously test for all aspects of the space environment. These limitations also apply to testing organic compounds and minerals that are relevant for studying comets, asteroids, the surface of Mars, and the atmospheres of planets and moons. Results could support better design for spacecraft and satellites, including improved thermal control, and the development of sensors for research and industrial applications.
      Preparation of one of the Euro Material Ageing’s experiments for launch.Centre National d’Etudes Spatiales Repairing spacecraft from the inside
      Nanolab Astrobeat investigates using cold welding to repair perforations in the outer shell or hull of a spacecraft from the inside. Less force is needed to fuse metallic materials in space than on Earth, and cold welding could be an effective way to repair spacecraft.
      Some micrometeoroids and space debris traveling at high velocities could perforate the outer surfaces of spacecraft, possibly jeopardizing mission success or crew safety. The ability to repair impact damage from inside a spacecraft may be more efficient and safer for crew members. Results also could improve applications of cold welding on Earth as well.
      The investigation also involves a collaboration with cellist Tina Guo with support from New York University Abu Dhabi to store musical compositions on the Astrobeat computer. Investigators planned to stream this “Music from Space” from the space station to the International Astronautical Congress in Milan and to Abu Dhabi after the launch.
      The Nanolab Astrobeat computer during assembly prior to launch.Malta College of Arts, Science & Technology/ Leonardo Barilaro Download high-resolution photos and videos of the research mentioned in this article. 
      Melissa Gaskill
      International Space Station Research Communications Team
      Johnson Space Center
      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Station Benefits for Humanity
      Latest News from Space Station Research
      International Space Station
      View the full article
    • By NASA
      Mars Sample Return MSR Home Mission Concept Overview Perseverance Rover Sample Retrieval Lander Mars Ascent Vehicle Sample Recovery Helicopters Earth Return Orbiter Science Overview Bringing Mars Samples to Earth Mars Rock Samples MSR Science Community Member Sign up News and Features Multimedia Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
      New Team to Assess NASA’s Mars Sample Return Architecture Proposals
      NASA announced Wednesday a new strategy review team will assess potential architecture adjustments for the agency’s Mars Sample Return Program, which aims to bring back scientifically selected samples from Mars, and is a key step in NASA’s quest to better understand our solar system and help answer whether we are alone in the universe.
      Earlier this year, the agency commissioned design studies from the NASA community and eight selected industry teams on how to return Martian samples to Earth in the 2030s while lowering the cost, risk, and mission complexity. The new strategy review team will assess 11 studies conducted by industry, a team across NASA centers, the agency’s Jet Propulsion Laboratory in Southern California, and the Johns Hopkins Applied Physics Laboratory. The team will recommend to NASA a primary architecture for the campaign, including associated cost and schedule estimates.
      “Mars Sample Return will require a diversity of opinions and ideas to do something we’ve never done before: launch a rocket off another planet and safely return samples to Earth from more than 33 million miles away,” said NASA Administrator Bill Nelson. “It is critical that Mars Sample Return is done in a cost-effective and efficient way, and we look forward to learning the recommendations from the strategy review team to achieve our goals for the benefit of humanity.”
      Returning samples from Mars has been a major long-term goal of international planetary exploration for more than three decades, and the Mars Sample Return Program is jointly planned with ESA (European Space Agency). NASA’s Perseverance rover is collecting compelling science samples that will help scientists understand the geological history of Mars, the evolution of its climate, and potential hazards for future human explorers. Retrieval of the samples also will help NASA’s search for signs of ancient life.
      The team’s report is anticipated by the end of 2024 and will examine options for a complete mission design, which may be a composite of multiple studied design elements. The team will not recommend specific acquisition strategies or partners. The strategy review team has been chartered under a task to the Cornell Technical Services contract. The team may request input from a NASA analysis team that consists of government employees and expert consultants. The analysis team also will provide programmatic input such as a cost and schedule assessment of the architecture recommended by the strategy review team.
      The Mars Sample Return Strategy Review Team is led by Jim Bridenstine, former NASA administrator, and includes the following members:
      Greg Robinson, former program director, James Webb Space Telescope Lisa Pratt, former planetary protection officer, NASA Steve Battel, president, Battel Engineering; Professor of Practice, University of Michigan, Ann Arbor Phil Christensen, regents professor, School of Earth and Space Exploration, Arizona State University, Tempe Eric Evans, director emeritus and fellow, MIT Lincoln Lab Jack Mustard, professor of Earth, Environmental, and Planetary Science, Brown University Maria Zuber, E. A. Griswold professor of Geophysics and presidential advisor for science and technology policy, MIT The NASA Analysis Team is led by David Mitchell, chief program management officer at NASA Headquarters, and includes the following members:
      John Aitchison, program business manager (acting), Mars Sample Return Brian Corb, program control/schedule analyst, NASA Headquarters Steve Creech, assistant deputy associate administrator for Technical, Moon to Mars Program Office, NASA Headquarters Mark Jacobs, senior systems engineer, NASA Headquarters Rob Manning, chief engineer emeritus, NASA JPL Mike Menzel, senior engineer, NASA Goddard Fernando Pellerano, senior advisor for Systems Engineering, NASA Goddard Ruth Siboni, chief of staff, Moon to Mars Program Office, NASA Headquarters Bryan Smith, director of Facilities, Test and Manufacturing, NASA Glenn Ellen Stofan, under secretary for Science and Research, Smithsonian For more information on NASA’s Mars Sample Return, visit:
      https://science.nasa.gov/mission/mars-sample-return

      Dewayne Washington
      Headquarters, Washington
      202-358-1100
      dewayne.a.washington@nasa.gov 
      Share








      Details
      Last Updated Oct 16, 2024 Related Terms
      Mars Mars Sample Return (MSR) Missions Explore More
      3 min read NASA’s Hubble Sees a Stellar Volcano


      Article


      7 hours ago
      6 min read NASA, NOAA: Sun Reaches Maximum Phase in 11-Year Solar Cycle


      Article


      1 day ago
      2 min read ESA/NASA’s SOHO Spies Bright Comet Making Debut in Evening Sky
      The Solar and Heliospheric Observatory (SOHO) has captured images of the second-brightest comet to ever pass…


      Article


      5 days ago
      Keep Exploring Discover Related Topics
      Mars Sample Return


      Mars Sample Return would be NASA’s most ambitious, multi-mission campaign that would bring carefully selected Martian samples to Earth for…


      Mars 2020: Perseverance Rover


      NASA’s Mars Perseverance rover seeks signs of ancient life and collects samples of rock and regolith for possible Earth return.


      Mars Science Laboratory: Curiosity Rover


      Part of NASA’s Mars Science Laboratory mission, at the time of launch, Curiosity was the largest and most capable rover…


      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…

      View the full article
    • By European Space Agency
      ESA’s Hera mission for planetary defence has taken its first images using three of the instruments that will be used to explore and study the asteroids Dimorphos and Didymos.
      View the full article
  • Check out these Videos

×
×
  • Create New...