Jump to content

Melt – ESA’s newly released documentary


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      One of the first images captured by Euclid shows the Perseus cluster, a group of thousands of galaxies located 240 million light-years from Earth. The closest galaxies appear as swirling structures while hundreds of thousands of background galaxies are visible only as points of light.ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO The new images from the Euclid mission include a cluster of thousands of distant galaxies, demonstrating the spacecraft’s unique abilities. 
      The Euclid mission, which will investigate the mysteries of dark matter and dark energy, released its first five science images Tuesday, Nov. 7 The observatory, led by ESA (European Space Agency) with NASA contributions, is scheduled to begin regular science operations in early 2024.
      The new images include views of a large cluster of thousands of distant galaxies, close-ups of two nearby galaxies, a gravitationally bound group of stars called a globular cluster, and a nebula (a cloud of gas and dust in space where stars form) – all depicted in vibrant colors.
      “The Euclid observatory will uncover a treasure trove of scientific discoveries that will be used across the world, including by U.S. scientists, for years to come,” said Nicola Fox, associate administrator, Science Mission Directorate, at NASA Headquarters in Washington. “Together, NASA and ESA are paving the way for a new era of cosmology for NASA’s forthcoming Nancy Grace Roman Space Telescope, which will build upon what Euclid learns and will additionally survey objects on the outskirts of our solar system, discover thousands of new planets, explore nearby galaxies, and more.”
      The spiral galaxy IC 342, located about 11 million light-years from Earth, lies behind the crowded plane of the Milky Way: Dust, gas, and stars obscure it from our view. Euclid used its near-infrared instrument to peer through the dust and study it.ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO Euclid launched on July 1 from Cape Canaveral, Florida, then traveled nearly 1 million miles to its vantage point. Following a period of commissioning (testing of the instruments and other components), the space telescope is performing as expected.
      NASA’s Jet Propulsion Laboratory in Southern California delivered critical hardware for one of the Euclid spacecraft’s instruments. In addition, NASA has established a U.S.-based Euclid science data center, and NASA-funded science teams will join other Euclid scientists in studying dark energy, galaxy evolution, and dark matter. The agency’s Nancy Grace Roman mission will also study dark energy – in ways that are complementary to Euclid. Mission planners will use Euclid’s findings to inform Roman’s dark energy work.
      Surveying the Dark Universe
      During its planned six-year mission, Euclid will produce the most extensive 3D map of the universe yet, covering nearly one-third of the sky and containing billions of galaxies up to 10 billion light-years away from Earth.
      The galaxy NGC 6822 is located 1.6 million light-years from Earth. Euclid was able to capture this view of the entire galaxy and its surroundings in high resolution in about one hour, which isn’t possible with ground-based telescopes or targeted telescopes (such as NASA’s Webb) that have narrower fields of view.ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO To do this, Euclid needs a wide field of view, which enabled these new images covering a relatively large area. In this way, Euclid differs from targeted observatories like NASA’s James Webb Space Telescope that focus on a smaller area of the sky at any one time but typically offer higher-resolution images. Wide-field observatories like Euclid can observe large sections of the sky much faster than targeted telescopes. In addition, Euclid has high resolution compared to previous survey missions, which means it will be able to see more galaxies in each image than previous telescopes.
      For example, Euclid’s wide view was able to capture the entirety of the Perseus galaxy cluster, and many galaxies beyond it, in just one image. Located 240 million light-years from Earth, Perseus is among the most massive structures known in the universe. Euclid’s full survey will ultimately cover an area 30,000 times larger than this image.
      The Horsehead Nebula, also known as Barnard 33, is part of the Orion constellation. About 1,375 light-years away, it is the closest giant star-forming region to Earth. With Euclid, which captured this image, scientists hope to find many dim and previously unseen Jupiter-mass planets in their celestial infancy, as well as baby stars. Full image here.ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO The telescope’s survey approach is necessary to study dark energy, the mysterious driver behind our universe’s accelerating expansion. While gravity should pull everything in the universe together, everything is instead moving apart faster and faster. “Dark energy” is the term scientists use for this unexplained expansion.
      To study the phenomenon, scientists will map the presence of another cosmic mystery, dark matter. This invisible substance can be observed only by its gravitational effect on “regular” matter and objects around it, like stars, galaxies, and planets. Dark matter is five times more common in the cosmos than regular matter, so if dark energy’s expansive influence on the universe has changed over time, the change should be recorded in how dark matter is distributed on large scales across the universe, and Euclid’s 3D map should capture it.
      This sparkly image shows Euclid’s view of a globular cluster – a collection of gravitationally bound stars that don’t quite form a galaxy – called NGC 6397. No other telescope can capture an entire globular cluster in a single observation and distinguish so many stars within it.ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO “Euclid’s first images mark the beginning of a new era of studying dark matter and dark energy,” said Mike Seiffert, Euclid project scientist at JPL. “This is the first space telescope dedicated to dark universe studies, and the sheer scale of the data we’re going to get out of this will be unlike anything we’ve had before. These are big mysteries, so it’s exciting for the international cosmology community to see this day finally arrive.”
      NASA’s Roman mission will study a smaller section of sky than Euclid, but it will provide higher-resolution images of hundreds of millions of galaxies and peer deeper into the universe’s past, providing complementary information. Scheduled to launch by May 2027.
      The data from the new Euclid images is now available to the scientific community, and scientific papers analysing that data are expected to follow. As the mission progresses, Euclid’s bank of data will grow. New batches will be released once per year and will be available to the global scientific community via the Astronomy Science Archives hosted at ESA’s European Space Astronomy Centre in Spain.
      More About the Mission
      Euclid is a European mission, built and operated by ESA, with contributions from NASA. The Euclid Consortium – consisting of more than 2,000 scientists from 300 institutes in 13 European countries, the U.S., Canada, and Japan – is responsible for providing the scientific instruments and scientific data analysis. ESA selected Thales Alenia Space as prime contractor for the construction of the satellite and its service module, with Airbus Defence and Space chosen to develop the payload module, including the telescope. NASA provided the detectors of the Near-Infrared Spectrometer and Photometer, NISP. Euclid is a medium-class mission in ESA’s Cosmic Vision Programme.
      News Media Contacts
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      Elizabeth Landau
      NASA Headquarters, Washington
      202-358-0845
      elandau@nasa.gov
      ESA Media Relations
      media@esa.int
      2023-161
      Share
      Details
      Last Updated Nov 07, 2023 Related Terms
      Astrophysics Dark Matter & Dark Energy Euclid Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Jet Propulsion Laboratory Nancy Grace Roman Space Telescope Stars The Universe Explore More
      5 min read NASA’s Curiosity Rover Clocks 4,000 Days on Mars
      Article 19 hours ago 5 min read NASA Telescopes Discover Record-Breaking Black Hole
      Article 21 hours ago 3 min read Hubble Tangos with a Dancer in Dorado
      This vibrant Hubble Space Telescope image features the spiral galaxy NGC 1566, sometimes informally referred…
      Article 4 days ago View the full article
    • By NASA
      2 min read
      Hubble’s Multi-Wavelength View of Recently-Released Webb Image
      This NASA Hubble Space Telescope image of NGC 5068 uses data in ultraviolet, visible, and near-infrared light. NASA, ESA, R. Chandar (University of Toledo), and J. Lee (Space Telescope Science Institute); Processing: Gladys Kober (NASA/Catholic University of America) Hubble is sharing a brand new galaxy image every day through October 7, 2023!
      Visit our website daily, or follow along on X, Facebook, and Instagram.
      Patches of bright pink and wisps of dark red paint the foreground of this new NASA Hubble Space Telescope image. NGC 5068 is a barred spiral galaxy with thousands of star-forming regions and large quantities of interstellar dust. First discovered by British astronomer William Herschel in 1785, NGC 5068 sits in the southern region of the constellation Virgo and is around 20 million light-years away. Astronomers estimate the galaxy is 45,000 light-years in diameter.
      At the top center of this image lies NGC 5068’s bright central bar, a densely packed region of mature stars. A black hole lurks behind the bar, tugging the stars together with its intense gravitational pull. The bright pinkish-red splotches along the bottom and sides of the image are regions of ionized hydrogen gas where young star clusters lie. Though not very clear from this angle, these splotches are along the galaxy’s spiral arms, where new stars typically form.
      Astronomers also found at least 110 Wolf-Rayet stars in NGC 5068. Wolf-Rayet stars are a type of old, massive star that loses mass at a very high rate. They are typically more than 25 times the mass of our Sun and up to a million times more luminous. There are about 220 Wolf-Rayet stars in our Milky Way galaxy.
      NGC 5068 is difficult to see with human eyes because it has relatively low surface brightness. Luckily, Hubble’s ultraviolet, visible, and near-infrared capabilities helped capture the beauty and intrigue of this galaxy. Different cosmic objects emit different wavelengths of light; young and hot stars emit ultraviolet light, so Hubble uses ultraviolet observations to find them.
      This NASA Hubble Space Telescope image (upper-right) includes ultraviolet, visible, and near-infrared light. The Webb image (lower-right) is in infrared. The lower-left, wide-field image of NGC 5068 places the locations of the Hubble and Webb images within the context of the entire galaxy and to each other. NASA, ESA, R. Chandar (University of Toledo), and J. Lee (STScI); Processing: Gladys Kober (NASA/Catholic University of America), DECam, Victor M. Blanco/CTIO, CSA, J. Lee and the PHANGS-JWST Team In June of 2023, NASA’s James Webb Space Telescope released its own infrared image of NGC 5068 as part of a science campaign to learn more about star formation in gaseous regions of nearby galaxies. Many of Webb’s observations are building on earlier Hubble observations, specifically a collection of 10,000 images of star clusters.

      See the new images and learn more about galaxies

      Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Oct 06, 2023 Editor Andrea Gianopoulos Contact Related Terms
      Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope James Webb Space Telescope (JWST) Missions Science Mission Directorate Spiral Galaxies The Universe Keep Exploring Discover More Topics From NASA
      Stars Stories



      Galaxies Stories



      Exoplanets



      Our Solar System


      View the full article
    • By European Space Agency
      New images of the Orion Nebula from the NASA/ESA/CSA James Webb Space Telescope have been included in ESA’s ESASky application, which has a user-friendly interface to visualise and download astronomical data.
      View the full article
    • By NASA
      NASA and Blue Origin’s Club for the Future will co-host multiple free in-person viewing events of the agency’s documentary, The Color of Space, at historically Black colleges and universities, conferences, festivals, and more nationwide. The documentary is a conversation between seven current and former Black astronauts, each of whom were selectedView the full article
    • By European Space Agency
      During spring and summer, as the air warms up and the sun beats down on the Greenland Ice Sheet, melt ponds pop up. Melt ponds are vast pools of open water that form on both sea ice and ice sheets and are visible as turquoise-blue pools of water in this Copernicus Sentinel-2 image.
      View the full article
  • Check out these Videos

×
×
  • Create New...