Jump to content

Mind the stars


Recommended Posts

Mind_the_stars_card_full.jpg Image:

Space can be a cruel mistress, but she is a beautiful one.

As we await the launch of ESA astronaut Matthias Maurer and the return of Thomas Pesquet, let us marvel at the fact that humans live and work in space, an environment so inhospitable to us.

As Thomas nears the end of his six-month mission Alpha on the Space Station, he took this image, noting that living on the International Space Station “really feels like flying on a spaceship into the cosmos… or wait… that’s what we do.”

While astronauts are often pointing their cameras down to Earth, Thomas looked up for this image. “When you let your eyes adapt to the night, you start seeing millions of stars and it’s amazing…there’s also a lot of beauty in the cosmos itself, it’s just harder to see (and to photograph) at first.”

Thanks to collective human intelligence and cooperation, the International Space Station has been a reality for over 20 years, hosting astronauts who run experiments and monitor our planet from above. While launches are quite routine these days, delays happen but that’s the space business.

In that same spirit of partnership, humans are soon returning to the Moon on the Artemis missions, powered by the European Service Module, and preparing to build an outpost in lunar orbit. The Gateway will be a home far away from home and a stepping-stone to our next goal in space, humans on Mars.

Until then, make sure to look up and, like Thomas, savour the view. You’re almost home. 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      ESA/Hubble & NASA, J. Tan (Chal This NASA/ESA Hubble Space Telescope image presents a visually striking collection of interstellar gas and dust. Named RCW 7, the nebula is located just over 5,300 light-years from Earth in the constellation Puppis.
      Nebulae are areas rich in the raw material needed to form new stars. Under the influence of gravity, parts of these molecular clouds collapse until they coalesce into very young, developing stars, called protostars, which are still surrounded by spinning discs of leftover gas and dust. The protostars forming in RCW 7 are particularly massive, giving off strongly ionizing radiation and fierce stellar winds that transformed the nebula into a H II region.
      H II regions are filled with hydrogen ions — H I refers to a normal hydrogen atom, while H II is hydrogen that lost its electron making it an ion. Ultraviolet radiation from the massive protostars excites the hydrogen in the nebula, causing it to emit light that gives this nebula its soft pinkish glow.
      The Hubble data in this image came from the study of a particularly massive protostellar binary named IRAS 07299-1651, still in its glowing cocoon of gas in the curling clouds toward the top of the image. To expose this star and its siblings, astronomers used Hubble’s Wide Field Camera 3 in near-infrared light. The massive protostars in this image are brightest in ultraviolet light, but they emit plenty of infrared light too. Infrared light’s longer wavelength lets it pass through much of the gas and dust in the cloud allowing Hubble to capture it. Many of the larger-looking stars in this image are foreground stars that are not part of the nebula. Instead, they sit between the nebula and our solar system.
      The creation of an H II region marks the beginning of the end for a molecular cloud like RCW 7. Within only a few million years, radiation and winds from the massive stars will gradually disperse the nebula’s gas — even more so as the most massive stars come to the end of their lives in supernova explosions. New stars in this nebula will incorporate only a fraction of the nebula’s gas, the rest will spread throughout the galaxy to eventually form new molecular clouds.
      View the full article
    • By NASA
      2 min read
      Hubble Captures Infant Stars Transforming a Nebula
      This striking NASA/ESA Hubble Space Telescope image features the nebula RCW 7. ESA/Hubble & NASA, J. Tan (Chalmers University & University of Virginia), R. Fedriani This NASA/ESA Hubble Space Telescope image presents a visually striking collection of interstellar gas and dust. Named RCW 7, the nebula is located just over 5,300 light-years from Earth in the constellation Puppis.
      Nebulae are areas rich in the raw material needed to form new stars. Under the influence of gravity, parts of these molecular clouds collapse until they coalesce into very young, developing stars, called protostars, which are still surrounded by spinning discs of leftover gas and dust. The protostars forming in RCW 7 are particularly massive, giving off strongly ionizing radiation and fierce stellar winds that transformed the nebula into a H II region.
      H II regions are filled with hydrogen ions — H I refers to a normal hydrogen atom, while H II is hydrogen that lost its electron making it an ion. Ultraviolet radiation from the massive protostars excites the hydrogen in the nebula, causing it to emit light that gives this nebula its soft pinkish glow.
      The Hubble data in this image came from the study of a particularly massive protostellar binary named IRAS 07299-1651, still in its glowing cocoon of gas in the curling clouds toward the top of the image. To expose this star and its siblings, astronomers used Hubble’s Wide Field Camera 3 in near-infrared light. The massive protostars in this image are brightest in ultraviolet light, but they emit plenty of infrared light too. Infrared light’s longer wavelength lets it pass through much of the gas and dust in the cloud allowing Hubble to capture it. Many of the larger-looking stars in this image are foreground stars that are not part of the nebula. Instead, they sit between the nebula and our solar system.
      The creation of an H II region marks the beginning of the end for a molecular cloud like RCW 7. Within only a few million years, radiation and winds from the massive stars will gradually disperse the nebula’s gas — even more so as the most massive stars come to the end of their lives in supernova explosions. New stars in this nebula will incorporate only a fraction of the nebula’s gas, the rest will spread throughout the galaxy to eventually form new molecular clouds.

      Download the above image

      Explore More

      Hubble Space Telescope


      Hubble’s Nebulae


      Exploring the Birth of Stars

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Jun 21, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Nebulae Protostars Stars The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Monster Black Holes Are Everywhere



      Seeing Light Echoes



      Hubble Images


      View the full article
    • By NASA
      Supernova remnant 3C 58.X-ray: NASA/CXC/ICE-CSIC/A. Marino et al.; Optical: SDSS; Image Processing: NASA/CXC/SAO/J. Major The supernova remnant 3C 58 contains a spinning neutron star, known as PSR J0205+6449, at its center. Astronomers studied this neutron star and others like it to probe the nature of matter inside these very dense objects. A new study, made using NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton, reveals that the interiors of neutron stars may contain a type of ultra-dense matter not found anywhere else in the Universe.
      In this image of 3C 58, low-energy X-rays are colored red, medium-energy X-rays are green, and the high-energy band of X-rays is shown in blue. The X-ray data have been combined with an optical image in yellow from the Digitized Sky Survey. The Chandra data show that the rapidly rotating neutron star (also known as a “pulsar”) at the center is surrounded by a torus of X-ray emission and a jet that extends for several light-years. The optical data shows stars in the field.
      The team in this new study analyzed previously released data from neutron stars to determine the so-called equation of state. This refers to the basic properties of the neutron stars including the pressures and temperatures in different parts of their interiors.
      The authors used machine learning, a type of artificial intelligence, to compare the data to different equations of state. Their results imply that a significant fraction of the equations of state — the ones that do not include the capability for rapid cooling at higher masses — can be ruled out.
      The researchers capitalized on some neutron stars in the study being located in supernova remnants, including 3C 58. Since astronomers have age estimates of the supernova remnants, they also have the ages of the neutron stars that were created during the explosions that created both the remnants and the neutron stars. The astronomers found that the neutron star in 3C 58 and two others were much cooler than the rest of the neutron stars in the study.
      The team thinks that part of the explanation for the rapid cooling is that these neutron stars are more massive than most of the rest. Because more massive neutron stars have more particles, special processes that cause neutron stars to cool more rapidly might be triggered.
      One possibility for what is inside these neutron stars is a type of radioactive decay near their centers where neutrinos — low mass particles that easily travel through matter — carry away much of the energy and heat, causing rapid cooling.
      Another possibility is that there are types of exotic matter found in the centers of these more rapidly cooling neutron stars.
      The Nature Astronomy paper describing these results is available here. The authors of the paper are Alessio Marino (Institute of Space Sciences (ICE) in Barcelona, Spain), Clara Dehman (ICE), Konstantinos Kovlakas (ICE), Nanda Rea (ICE), J. A. Pons (University of Alicante in Spain), and Daniele Viganò (ICE).
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      For more Chandra images, multimedia and related materials, visit:
      https://www.nasa.gov/mission/chandra-x-ray-observatory/
      Visual Description
      This is an image of the leftovers from an exploded star called 3C 58, shown in X-ray and optical light. At the center of the remnant is a rapidly spinning neutron star, called a pulsar, that presents itself as a bright white object that’s somewhat elongated in shape.
      Loops and swirls of material, in shades of blue and purple, extend outward from the neutron star in many directions, resembling the shape of an octopus and its arms.
      Surrounding the octopus-like structure is a cloud of material in shades of red that is wider horizontally than it is vertically. A ribbon of purple material extends to the left edge of the red cloud, curling upward at its conclusion. Another purple ribbon extends to the right edge of the red cloud, though it is less defined than the one on the other side. Stars of many shapes and sizes dot the entire image.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      Jonathan Deal
      Marshall Space Flight Center
      Huntsville, Ala.
      256-544-0034
      View the full article
    • By European Space Agency
      For the first time, a phenomenon astronomers have long hoped to image directly has been captured by the NASA/ESA/CSA James Webb Space Telescope’s Near-InfraRed Camera (NIRCam). In this stunning image of the Serpens Nebula, the discovery lies in the northern area of this young, nearby star-forming region.
      View the full article
    • By European Space Agency
      ESA’s XMM-Newton and NASA’s Chandra spacecraft have detected three young neutron stars that are unusually cold for their age. By comparing their properties to different neutron star models, scientists conclude that the oddballs’ low temperatures disqualify around 75% of known models. This is a big step towards uncovering the one neutron star ‘equation of state’ that rules them all, with important implications for the fundamental laws of the Universe.
      View the full article
  • Check out these Videos

×
×
  • Create New...